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ABSTRACT

The sample matrix inversiontSMI) procedure may suffer from severe computational complexity as well as numeri­
cal instability. In this paper, a method which is a numerically more efficient alternative to the SMI procedure is 
proposed based on the Cholesky decomposition of the inverse covariance matrix. According to this method, adaptive 
beamforming and detection algorithms are combined in a unified config니ration, where the Cholesky factor of the in­
verse sample covariance matrix is estimated using a Gram-Schmidt (GS) processor which directly operates on the 
secondary inputs. The main feature of this configuration is that neither the covariance matrix nor the Cholesky fac­
tor needs to be estimated explicitly, in addition, the arithmetic efficiency of the proposed configuration results from 
using systolic processing architectures that take advantage of the GS processor. Computer simulations are conduc­
ted to show that the proposed configuration shows comparable performance to the theoretical SMI results. Another 
configuration which does not involve the secondary inp니ts is also developed to overcome nonhomogeneous 
environments, and a computationally attractive lattice-GS str니cture is considered to reduce the computational com­
plexity of the GS structure.

요 약

SMI 방법은 수치적인 불안정성과 아울러 많은 계산량을 갖는다. 본 논문에서는 역 공분산 행렬의 Cholesky 분할을 이용 

하여 SMI 방법보다 효율적인 방법을 제안한다. 제안한 방법에서는 적응 빔 형상과 검출이 하나의 구조로 실현되며 이에 필 

요한 역 공분산 행렬의 Cholesky factor는 secondary 입력으루부터 GS 프로세서를 이용하여 추정한다. 제안한 구조의 중요 

한 특징은 공분산 행렬과 Cholesky factor를 직접 구할 필요가 없다는 점이며, 또한 GS 프로세서의 장점을 이용한 syst이ic 
구조를 사용함으로써 효율적인 계산을 수행할 수 있匚卜. 모의 실험을 통하여 제안한 방법의 성능과 SMI 방법의 성능을 서로 

비교하였다. 또한 nonhomogeneous 환경에서 동작하기 위한 방법이 제시되었으며, 아울러 계산량이 많은 GS 구조의 단점 

을 극복하기 위해 lattice-GS 구조를 이용하는 방법을 제안하였다.

I. Introchjction

The objective of an adaptive detector is to de­
tect a target of known form in the presence of
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noise (interference) which is assumed to be Gaus­
sian, but whose covariance matrix is totally un­
known. Brennan and Reedtl] derived a beamfor­
mer equation to maximize the probability of de­
tection. However, the exact application of an op­
timum detection scheme requires a priori knowl­
edge of the noise covariance matrix. Usually in pr­
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actice, this covariance matrix is not available and 
must be estimated using an adaptive technique.

In [6], Reed et al. evaluated the performance 
of an adaptive beamformer, where the sample matr­
ix inversion(SMI) procedure was developed. The 
SMI procedure uses two sets of data : the pri­
mary data, where the known signal may exist and 
the secondary inputs, which are ass니med to con­
tain only noise. An estimate of the noise covari­
ance is directly formed by using independent sec­
ondary inputs, which is then used in place of the 
true covariance in the weight vector e이니ation. To 
generate the beamformui the estiniated
weight vector is applied to the primary vector. 
Finally, the output of the beamformer is compar­
ed with a threshold for signal detection. The per­
formance of the above procedure was well analy­
zed in [6]. However, the test statistics in [6] do­
es not provide constant false alarm rate(CFAR) 
behavior since the tere is no rule to determine 
the threshold to achieve a given probability of 
false alarm (Pfa). A generalization of the CFAR 
detectors was made by Kelly[2], Kelly derived 
the generalized likelihood-ratio test(GLRT) which 
is independent of both the level and the structure 
of the true covariance. Robey et al. [3] also pro­
posed a CFAR detector called the adaptive mat­
ched filter(AMF).

Both the GLRT as weH as the AMF test neces­
sarily use the SMI procedure to estimate and in­
vert a sample covariance matrix. As noted in [6], 
the SMI technique converges with the smallest 
possible number of samples, but requires heavy 
computational load and suffers from numerical in 
stability. To overcome such problems, Cholesky 
decomposition technique can be applied[끼. When 
the dimension of the covariance matrix is large, 
the Cholesky decomposition technique about half 
the operations required by direct m거trix inver­
sion. Nevertheless, the main difficulty of the Cho­
lesky decomposition approach is that it requires 
the explicit formation of the sample covariance 
matrix as in the SMI procedure[7].

One way to further increase the computational 

and numerical efficiency of the Cholesky de­
composition method is to employ Grarri'Schmidt 
(GS) orthogonalization[8]. As a result of the GS 
orthogonalization of the input data, the inverse 
covariance matrix can be decomposed into the 
product of a lower triangular matrix and its com­
plex transpose. This transformation is called the 
Cholesky decomposition of the inverse covariance 
matrixLS].

It this paper, an efficient method of implement­
ing the adaptive algorithms which concerns the 
SMI procedure is developed based on the Cho­
lesky decomposition of the inverse covariance 
matrix. This is an alternative method of the SMI 
procedure, but provides numerically more ef­
ficient performances than the SMI since it avoids 
both the estimation as w시 1 as the inversion of 
the sample covariance matrix. According to the 
developed method, adaptive beamformer and de­
tectors are combined in a unified structure. To 
estimate the lower triangular matrix(called the 
Cholesky factor), a GS processor which performs 
a series of orthogonal projections using the sec­
ondary inputs in a systematic manner is compri­
sed in the developed configuration. The main fea­
ture of the configuration is that neither the co­
variance matrix nor the Cholesky factor needs to 
be estimated explicitly. Instea, parameters estim­
ated in the process of GS orthogonalization are 
directly applied to two nonadaptive GS proces­
sors which operate on the primary data and the 
steering vector, respectively. In addition, the ari­
thmetic efficiency of the proposed configuration 
res니Its from using systolic processing architect­
ures that take advantage of the GS processor.

Another configuration implementing adaptive 
beamforming and detection algorithms based on 
the primary data is developed to overcome the 
problem of the limited secondary inputs, which 
may occur in severely nonhomogeneous environ­
ments. Also, a computationally efficient lattice- 
GS structure is considered to reduce the com­
putational complexity of the GS structure.

This paper is organized as follows. In Section
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II, we briefly review the adaptive array proces­
sing algorithms. A configuration unifying the ad­
aptive realization of the beamformer and the de­
tector is described in Section DI. A solution to 
the problem of the limited secondary inputs is 
presented in Section IV and a computationally at­
tractive lattice-GS structure is applied to the 
proposed configuration in Section V. In Section 
VI, we present simulation results. Finally, Section 
VI summarizes our results.

II. Adaptive Array Processing Algorithms

In an array processor, a data vector is compo­
sed of samples from several sensors. Fig.l illustr­
ates an array processor with N array elements 
and M taps. Let rT(k) = [xi(k) x2(k) •■- XN(k) ] de­
note a sample vector at time k. The L( = NxM) 
-dimensional primary data vector which may con­
tain a signal or a target return consists of M 
sample vectors :

xT(k)-[rT(k)rT(k-l)-rT(k-M+l)：. (2.1)

The input data is commonly assumed to be a com­
plex Gaussian random vector with mean 0 under 
hypothesis HO, mean as under hypothesis Hl, and 
covariance matrix Mx(k). Here, s 게id a denote a 
known steering vector in the look direction and 
an unknown complex scalar, respectively.

Now, the detection problem can be written as

x(k) ^as + n(k) : Hl (2.2a)
x(k) =n(k) : HO (2.2b) 

where n(k) denotes an interference(noise + clut- 
ter) vector. For Gaussian distributed interference 
with known covariance matrix Mx(k). Brennan and 
Reed[l] derived an optimal beamformer maxi­
mizing the probability of detection whose weight 
vector is given by

w =c Mx-1(k)s*. (2.3)

Maximizing the log likelihood-ratio with respect 
to the unknown complex amplitude a yields the 
maximum-likelihood(ML) estimate of 사45] :

a
xT(k) s*

sT Mx~'(k) s* 
(2.4)

and the generalized likelihood-ratio test(GLRT) 
is[4,5]:

成(k)MxT(k)S*F 
sM XL(k)甘

(2.5)

The main difference between two problems of 
beamforming and detection is that we are con 
cerned with a decision rule for target presence, 

Fig 1. Schematic diagram of an array doppler processor 
with N elements and M taps.
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rather than a filter which will reduce the inter­
ference before the data are passed on for further 
processing and eventually detectionL2]. It can be 
seen from the GLRT equation that the beamfor­
ming process accompanied by the nulling of inter­
ference seems to be a preliminary step in the de­
tection process. From this point of view, the 
GLRT can be divided into two processing steps : 
firstly, a beamformer performing a preliminary 
processing step produces its output as

y(k) =x'「(k) w. (2,6)

where the weight vector for conventional weight­
ing of the sample vector x(k) is given by (2.3). 
From (2.4) and (2.6), it can be found 나lat y(k) 
becomes the ML estimate of a when c = 1 / {sr 
Mx~'(k)s*}. Next the beamformer output is pas­
sed on to the detector to be tested for target de- 
J VvQien c = 1, the GLRT can be rewritten as

Hl
ly(k)|2 之 /<5 (2.7)

where the threshold 7 is multiplied by a scalar 
constant(5 = sTMx~ ^kJs* which is a normalization 
factor to provide the desired CFAR behavior. If 
the interference covariance matrix were known, 
then we would use the optimum detector for tar­
get detection. In practice, however, the covari­
ance matrix is unknown and must be estimated 
by using an adaptive technique.

For practical consideration, it is commonly as­
sumed that there exist a set of secondary data 
vectors 須(k), x2(k),... xK(k), which are K indepen­
dent and identically distributed L variate com­
plex vectors. The sample covariance matrix ba­
sed on these secondary inputs is[4]

- 1 K
Mx(k)=7 v x1*(k)x1T(k). (2.8)

Reed et al.[61 have characterized the perform­
ance of an adaptive beamformer in which M/k) 
is substituted in piacein the beamfor­
mer equation.

Kelly[2] derived the GLRT for the problem in 
which the primary and secondary data vectors 
were given and both a and Mx(k) were unknown 
parameters. The resulting test is

|xT(k)Mx^(k)s*|2 7—------------------------------- - ---------------- W K』.

sTMf1(k)s*{l + (l/K) xT(k)Mx-1(k)x*(k)} ho

(2.9)

Robey et al.[3] also proposed a simplified test 
statistic that was a limiting case of the GLRT, 
called the adaptive matched filter(AMF) test :

I 没(k)ML(k)s 叩
---------二一 一 I y. (2.10) 

sTMx^(k) s

In addition to the constant false alarm rate 
(CFAR) behavior, both tests in (2.9) and (2.10) 
have comparable performance to signals aligned 
with the assumed direction of arrival[3]. As pre- 
viou이y stated, the ML estimate of the inter­
ference covariance must be formed and then 
inverted to implement both the GLRT as well as 
나le AMF test.

In the next section, we present a method of 
implementing the adaptive beamforming and de­
tection algorithms based on the Cholesky de­
composition of the inverse covariance matrix.

ID. A Config니ration Unifying the Implementation 

of Adaptive Beamforming and Detection 

Algorithms

Under the hypothesis H(l, sample data vector 
consists of interferences. We can apply the GS 
orthogonalization to the returned echoes to obtain 
statistically independent random variables. Con­
sider a GS-transformed vector d? (k) = [d()(k) di 
(k) ... di.-i(k)] given by

d(k)=LdX(k). (3.1)

where the GS transformation matrix Ld is a lower 
triangular matrix whose diagonal elements are all 
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one[8]. Now d(k) is zero-mean Gaussian random 
variable, and its covariance matrix is a diagonal 
matrix whose diagonal elements are given by out­
put sample powers :

Rd(k)-Ld*Mx(k)LdT

= diag{Pd,o(k), Pd.i(k),…，Pd.L-i(k)}(3.2)

wdiere P1(k)=E{|di(k)I2}. Using (3.2), 나le inverse 
of Mx(k) is decomposed into the product of a 
lower triangular matrix and its complex trans­
pose, called the Cholesky decomposition]*?]:

Mx^(k)=LdTRd^(k)Ld*

-AT(k)A*(k) (3.3)

where the Cholesky factor A(k) Rd-1/2(k)或 

which is also a lower triangular matrix whose di­
agonal elements are Pr1/2(k), OMiML — L

Defining a whitened vector 2으(k) = A(k) x(k), 
Xa(k) is zero-mean Gaussian random variable with 
co\- riance matrix equal to 虹，(LxL) identity ma­
trix. By inverting the Cholesky factor, we can ev­
aluate the beamformer output :

y(k)-xT(k)Mx~1(k)s* = (A-1(k)Xa(k))TMx~1(k)s*
= &「(k)為* (3,4)

where sa denotes a transformed steering vector: 
= A(k)§, When c 1, we can see that the weight 
vector in (2.3) can be rewritten as

w =AT(k)sa*. (3.5)

Also, we can evaluate the normalization factor :

^ = sTMx'1(k)s* = saT(AT(k))-1Mx-1(k)(A*(k))-!Sa*

=sj Sa* (3.6)

Now we can obtain a simple GLRT by substitut­
ing the inner products in (2.7). It should be noted 
that the actual covariance does not appear in (3. 
4)〜(3.6), and thus the test statistics avoids both 

the formation as well as the inversion of the co­
variance matrix.

As previously noted, we can reconfigure the 
beamforming and detection algorithms in simple 
forms using the Cholesky decomposition tech­
nique. The Cholesky factor of the inverse covari­
ance matrix, however, requires the GS tranform- 
ation matrix Ld, Morover, an adaptive technique 
is required to estimate A(k) according to the 
statistical variation of the secondary inputs(i.e. 
array environment).

From the assumption that there exist K inde­
pendent secondary vectors, we can define the 
(LxK) secondary data matrix Xt(k) as

XLH(k) = [ *(k) x?(k) ... xK(k)^| . (3.7)

The ML estimate of interference covariance 
matrix can be rewritten as

- 1
Mx(k)=-,>- XLT(k)XL*(k). (3.8)K
After partitioning XtH(k) as

= (3.9)

a vector orthogonal to Xr -；H(k) is generated us­
ing the (L —l)th order linear predictor estimating 
YL-iH(k) using the rest Xi We may solve 
the system of normal equations to estimate a tap 
weight vector of the (L-l)th order predictor. In 
the process of estimating the tap weight vector 
the SMI is a compulsory procedure[8].

We can also use the GS structure to generate a 
vector which is orthogonal to (k). The GS 
processor produces different sets of mutually im- 
correlated random variables in a sequential fa­
shion, and the variable in each set is uncorrelated 
with those in the preceding set[9]. A multi-chan­
nel GS structure is illustrated in Fig. 2 for M=N 
=2(i.e. L=4). Operations of the GS predictor 
are based upon elementary processing units. For 
K inputs per channel, coefficients of the elemen­
tary processing units are determined as[10]
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MULTICHANNEL GS TRANSFORMER
Fig 2. Schematic diagram of a multi-channel GS pro­

cessor for M=N=2.

K-l
E ei-i.j+i(k-m) ei-i.j+i*(k-m) 

아, (k)=二」F-------------------- .

E I ei-i.i(k-m) I2 m=0
IMiMN —1, lMjvNr (3.10)

In [10], equivalence between the SMI and GS al­
gorithms has been proved by showing that dt-i 
(k) is orthogonal to Xi (k) as the prediction error 
vector of the (L—l)th order linear predictor do- 
es[10]. For convenience, this algorithm will be 
called the maximum-likelihood GS(MLGS).

Recursive equations for the GS structure are 
summarized as[9]

ekJ(k) =©if j+i(k) 一ei-i.i(k),

iMiMN —1, iMjMN —i, (3.11)

Final output of the GS processor is given by

dL(k)=§：(k) X：(k), (3.12)

aL-i(k) represents the equivalent tap weightL9]:

a[(k) =u[ La(k). (3.13)

where k [0 0... 0 1] denotes a vector picking 
out the last row in the transformation matrix.

To complete the GS orthogonalization of inp니t 

data, equivalent tap weight vectors correspond­
ing to successive orders less than (L— 1) must be 
computed. However, the GS processor produces 
different sets of mutually uncorrelated random 
variables in a sequential manner, and the variable 
in each set is uncorrelated with those in the pre­
ceding set. Thus, each stage of the GS processor 
produces uncorrelated o니tput vectors by perform­
ing the GS orthogonalization. Defining an (LxK) 
transformed data matrix as

pH(k) = g(k) d2(k) - dK(k)] T = L(k) XLH(k),

(3.14)

its covariance matrix can be expressed as

普 Rd(k)-Dr(k)D*(k)=L*(k)认(k)顼(k)

(3.15)

which is a diagonal matrix whose diagoal elemen­
ts are given by the averaged powers of the trans­
formed samples :

P"k)= % I Id", OMiMLT. (3.16) 
IY k I

From (3.15), we can write the inverse of the 
ML estimate of the clutter covariance as

Mx '(k)=U'(k) [-^ Rd(k)]-1Ld*(k)
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= AT(k) A*(k) (3.17)

where A(k) is the desired Cholesky factor of the 
matrix :

A(k)=［令 Rd(k) ］ t气仙). (3.18)

Now consider the transformed vectors : xa(k)= 
A(k)x(k) and sa(k)=A(k)s. We can evaluate the 
beamformer output

y(k) =xaT(k) sa(k), (3.19)

and the scalars

<5 (k) = saT(k) sa*(k), €(k) =&'、(k) xa*(k) (3.20)

From (3.19) and (3.20), we can see that the be­
amformer output depends on the primary and ste­
ering vectors only through an inner product. When 
these inner products are substiUited into the 
GLRT in (2.9), we obtain

Hl
ly(k) I2 之 K/j(k)(l + (l/K)€(k)! (3.21)

HO

Also, the AMF test can be expressed in a simple 
form :

Hl 
ly(k) I2 之搭(k)y (3.22)

HO

According to (3.19), (3.21) and (3.22), we can 
derive a configuration implementing the adaptive 
beamforming and detection algorithms in a nu­
merically efficient manner as illustrated in Fig. 3. 
The proposed scheme comprises an adaptive multi­
channel GS processor which operates on the sec­
ondary data vectors to implement the GS orth­
ogonalization. Based on the estimated parameters 
of the adaptive processor, the Cholesky factor of 
ML(k) is determined as (3.18). The estimated 
Cholesky factor is, in turn, applied to the primary 
data vector x(k) and the target vector s, respect- 
iv이y. Finally, the inner products in (3.19) and (3. 
20) are computed to have the beamformer output

Threshold

Ho/ HiBeamformer
Output:

Fig 3- C이］figuration unifying the implementation of the 
adaptive beamiormer and detectors.

or the test statistics for the detection of a target.
An important feature of the proposed configur­

ation is that neither the sample covariance matrix 
nor the Cholesky factor needs to be estimated ex­
plicitly. Instead, parameters estimated in the pro­
cess of the GS orthogonalization are directly ap­
plied to two nonadaptive GS processors which op-

Fig 4. GS processor transforming the inp니t vectors 
with the estimated Cholesky factor.
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erate on the primary data and the steering v은c- 
tor, respectively. Fig 4 shows the structure of a 
GS processor transforming input vectors using 
the estimated Cholesky factor.

IV. Adaptive Array Processing Based on Primary 

Data Vectors

A configuration realizing the adaptive beamfor­
ming and detection algorithms without the SMI 
procedure has been derived under the assumption 
that there exists a set mutually independent sec­
ondary vectors. The performance of the SMI te­
chnique critically depends on the size of the sec­
ondary data set which is very limited in severely 
nonhomogeneous environments. But if the target 
signals occur infrequently and do not compete 
significantly with the incoming noise energy, the 
interference covariance can be estimated from 
primary data vectors[6].

Suppose that a separate coherent output is av­
ailable from each receiving array element. In this 
case, one approach to the adaptive estimation of 
the time-varving covariance is to introduce the 
exponentially time-averaged estimator :

Mx(k)=AMx(k-l) + (l-X)x*(k)xT(k) (4.1)

where O<A<1 is a forgetting factor.
Applying input sequence to a multichannel GS 

processor, we get the decorrelated output sampl­
es. The best way of estimating the GS transform­
ation matrix from a coherent sequence is the mo­
dified GS(MGS) algorithm] 11] which performs 
better than the other orthogonal transformation 
algorithms such as Householder, and Givens al­
gorithms, as far as numerical accuracy is concern- 
ed[7]. Recently, a recursive form of the MGS 
(RMGS) was proposed[12]. The RMGS performs 
exact LS estimation and its computational com­
plexity is similar to that of the conventional re­
cursive LS(RLS) algorithm[12].

Using the RMGS algorithm, we can attain the 
L-dimensional output vector aT(k) = [q()(k) qjk) 

…QL-i(k)], with covariance matrix Rq(k). Rq(k) 
is a diagonal matrix whose diagonal elements are 
given by exponentially time-averaged estimates :

Pq.Jk) — xP(1.t(k —1) + (1 —X) I q((k) I2,
OMiML —1. (4.2)

Consequently, the desired Cholesky factor is

&(k)=[瓦(k)]T/2 當k) (4.3)

Now we can obtain the modified beamformer 
equation and detection tests by replacing A「(k) 
Aq*(k) in place of Mx~'(k). From (4.3), we can der­
ive another configuration realizing the adaptive be­
amforming and detection algorithms in a numeri­
cally efficient manner. This configuration does not 
include the secondary vectors as illustrated in

Primary 
Data Vector

츠(k)

Target
Vector

소一

Beamformer Ho/ H1
Output:

디g 5. Configuration not concerning the secondary 
inputs.
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Fig. 5. In Fig. 5, an adaptive multi-channel GS 
processor which operates directly on the primary 
data vector is included, and the estimated Chole­
sky factor is then applied to the target vector in 
the same manner as the configuration in Fig. 3. 
As previously noted, the transformation of the 
target vector is performed by using the GS pro­
cessor instead of estimating the Cholesky factor 
explicitly.

The RMGS performs the exact LS estimation, 
however, the computational complexity is similar 
to that of the RLS algorithm] 12]. To remedy this 
problem, nonexact LS techniques can be used. 
An example of the nonexact LS method is the 
least -mean-square (LMS) algorithm, The LMS al- 
gorithm[13] is wid이y used due to its effective­
ness as well as its simplicity, The adaptive GS fil­
ter whose coefficients are updated using the 
LMS algorithm has been extensively studied for 
various applications[8,9j. To improve the slow 
convergence of the LMS algorithm, the norma­
lized LMS algorithm can be used[8]. The stan­
dard gradient (SG) algorithm] 13] is a normalize- 
type LMS algorithm, which was derived to im­
plement the Burg's harmonic-mean algorithm in a 
recursive way for the LS lattice algorithm. The 
SG algorithm can be easily applied for the GS 
processor.

When the LMS algorithm is used, we have an 
estimate of the inverse covariance matrix :

S(k)=LqT(k)D-](k)Lq*(k)

= &T(k) A}*(k) (4.4)

where

D(k) =diag{PQ.o(k),…，Pq,L-i(k)) (4.5)

and Pqil(k), OMiML-l, are exponentially time- 
averaged power estimates of qjk). From (4.4), 
we get an estimate of the Cholesky factor :

A「、(k)=bF2(k)Lq(k). (4.6)

We may use the estimate S(k) in place of Mx--1 

(k) in both the beamformer equation and the de­
tection tests. Regardless of the simplicity of the 
LMS algorithm, the main drawback is that its 
convergence speed depends on the eigenvalue 
spread ratio of the reference input covariance 
[13]. Thus, it does not guarantee convergence 
with a small number of data samples, and the 
orthogonality between the output error and the 
reference input is satisfied only after the weights 
converge to their optimal values in contrast to 
the RMGS algorithm.

V. Consideration of the Lattice-GS Structure

The GS orthogonalization procedure can be im­
plemented using a lattice or a GS structure. The 
lattice structure has been widely used for various 
applications[8]. In a multi-channel lattice struc­
ture, it is known[8] that the backward prediction 
error vectors produced at the different stages are 
mutually orthogonal. However, the elements of 
an error vector are still correlated. Thus, the co­
variance matrix of the prediction error vector is a 
block diagonal matrix. It has been reported[9] 
that the predictor having the GS structure out­
performs the lattice counterpart, since the GS 
predictor completely orthogonaizes the reference 
signals. Although complete orthogonalization can 
be achieved with the GS structure, a major sh­
ortcoming of applying the GS structure to the 
proposed configuration is the heavy computation­
al load which increases at the rate of (MN)2.

As an effort of overcoming this problem, the 
multi-channel lattice-GS hybrid structure [15,16] 
was proposed. The multi-channel lattice-GS stru­
cture was attained by using the GS linear com­
biner in place of the linear combiner summing the 
weighted elements of the error vectors of the 
multi-channel lattice structure[15,161 In the lat­
tice-GS structure, the prediction error vectors 
are generated by using the lattice structure and 
the elements of the error vectors are decorrelated 
by using the GS structure. Fig. 6 shows the i-th 
stage of the lattice-GS structure.
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Fig 6. Block diagram of 나le i-th stage of 나！。lattice-GS 
structure.

Order updates for the lattice-GS structure are 
summarized as

£+i(k) = fi(k) 凡(k-l), (5.1a)

bi+」k) = bi(k-l) — Z：+】h J(k), MMM, (5.1b)

where £(k) and bi(k) are the (Nxl) forward and 
backward prediction error vectors at the i-th st­
age, respectively, §(k) and £】(k) are the GS-tr- 
ansformed versions of f)(k) and bJk). In this 
case, partial correlations are defined as

X?+i(k)=E[f：(k)房(k)], (5.2a)

2%i(k)=E[H(k) b：(k)]. (5.2b)

Now the covariance matrix of ^,(k) is given by

R砂k) = W*(k) Mx(k) UT(k)- (5.3)

which is naturally a diagonal matrix. We can use 
(5.3) to obtain the Cholesky factor of the inverse 
of Mx(k) as following :

A(k)=R广/2(q 或(k) (5.4)

To implement the i-th stage of the multi-chan­
nel lattice-GS structure, 3N2 coefficients are re­
quired ；this is a big save compared with what we 
have to pay to completely decorrelate the refer­
ence signals using only the GS structure[16]. 

lotal number of coefficients required to implem- 
ent the multi-channel predictor using the GS and 
the lattice-GS structures can be summarized as

GS:MN(MNT)/2
lattice —GS :3N(N — l)(M — l)+N(N — l)/2.

Fig. 7 shows the total number of coefficients of a 
GS and a lattice-GS structures for N = 6. We can 
see that the computational effectivess of the lat­
tice-GS structure increasee in proportion to the 
increase of the taps. Thus, computational effec­
tiveness is ensured when the lattice-GS structure 
is applied to the proposed configurations in Fig. 3 
and Fig. 5 in place of the GS structure. This ef­
fectiveness is emphasized by the increase of the 
array dimension.

When the coefficients of the lattice-GS predic­
tor are determined in the exact LS sense based 
on the K independent secondary data vectors, the 
inverse of the sample covariance matrix can be 
partitioned into the product of the Cholesky fac­
tor and its complex transpose. To estimate the 
Cholesky factor using the lattice-GS structure, it 
is required to combine the multi-channel LS lat­
tice and RMGS algorithms] 15]. But gradient-ty­
pe algorithms such as the LMS and the SG can 
be used to have a more computationally attract­
ive configuration.
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Fig 7. Total number of coefficients of the multi-chan­
nel GS and lattice-GS structure for N=6.
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VI. Simulation Results and Discussion

In this section, performances of the proposed 
approach are evaluated and compared with the 
theoretical SMI results via computer simulations.

For experimental purposes, it was assumed that 
the array had six sensor elements on a line spaced 
with the distance of half-wavelength and each el­
ement had three taps (MN=18). The environme­
nt had 12 independent interference sources which 
were restricted to two angular regions, -25°<0< 
—40° and 4O°<0<5O°. In the look direction two 
independent interferers were included. Interfer­
ence signals were presumed to have the Gaus­
sian-shaped frequency spectrum. Gaussian inter­
ferences for computer simulations were generated 
using the discrete Fourier transform(DFT) me- 
thod[17]. Parameters assumed in the simulations 
are listed in Table 1.

Table 1. Interference parameters for computer simulations.

N=5, M = 3
d/A=0.5 where distance between the adjacentsensors. 
Omnidirectional sensor patterns.
2 interference sources in look direction :

fol = 0 fo2=0.1fS
pi = 0.99 p2~0.98
CNRi = 40dB CNR2=40dB

4 interference sources are equally spaced in the region 
40°<e<50°
6 interference sources are equally spaced in the region 
-25°<0<-4O°
All interference sources in the sidelobe region have 
the same parameters :

f° = 0.3fs
p = 0.95
CNR=40dB

The steady-state covariance matrix Mx was fir­
st computed from 4,000 independent secondary 
data vectors. From this, optimum weight vector 
of the GLRT detector was obtained from (2.3). 
This weight, in turn, were then 녀sod to compute 
the steady-state signal-to-noise ratio (SNR) to be 
22.8 dB. To compare initial convergence behav­
iors, we computed the instantaneous output SNR 
values defined as

|sTw(k) I2
SNR(k) dB=-10 logio—-------l匚--- . (6.1)

wH(k) Mxw(k)

where the weight vector w(k) was computed from 
the estimated Cholesky factor :

w(k) = AT(k) a*(k). (6.2)

Initial values of the output SNR of the pro­
posed method and the theoretical SMI curve are 
illustrated in Fig. 8, where the theoretical SMI 
curve was obtained from the SMI theory[5]. Cor­
responding plots of SNR values were obtained by 
ensemble averaging over 20 independent trials of 
simulations. For 나比 SMI and RMGS algorithms, 
number of samples implies the number of second­
ary vectors with which the covariances are aver­
aged. More secondary vectors imply an accurate 
estimation of the matrix and reduced SNR loss 
accompanied by a longer transient time[5]. For 
the RMGS, SG and the LMS algorithms, 나le 
number of samples denotes the number of inde­
pendent data vectors(i.e, the number of primary 
vectors).

The exact LS methods(MLGS and RMGS) 
show a rapid convergence rate to the steady-state 
SNR value of 22.8 dB and the comparable per­
formance to the theoretical SMI. Also, as expe­
cted, the proposed configuration shows the same 
results as 나冶 SMI algorithm when 나!© MLGS al­
gorithm is used. The SG algorKhm shows slower 
convergence speed than the case of the exact LS 
algorithms. The LMS algori나im 아lows the worst 
performance in terms of the convergence speed, 
however, simplicity and effectiveness are the ma­
in advantages of the LMS algorithm. It was ob­
served that the exponential window methods(SG 
and RMGS) were accompanied by the steady­
state variations of SNR values caused by the ex­
ponential weighting factor A which was introdu­
ced to ensure that the data in the distant past 
were forgotten in order to track the changing en­
vironment. It is known that the steady-state and
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transient performance can be trade off m several 
ways according to different parameters to be 
used. In the simulations, 0.002 and 0.98 were used 
for /I and A. values, respectively. Those values 
were experimentally determined to have the same 
steady-state variances.

o

S3«
N
S
 1
0

~ Number of Vecwrs

를

 z-<0

-6Q.0
o.o Frequency (Hz)

3000.0

Fig 10. Frequency responses of the proposed configur- 
atkm in 나le look direction. (l)SMI, (2)MLGS, 
(3)RMGS, (4)SG and (5)LMS. (6)아lows the 
spectrum of the background clutter.

o.o

Fig 8. Output SNR values of the proposed configur­
ation for different algorithms: (l)SMI, (2) 
MLGS, (3)RMGS with A=0 98. (4)SG with A. 
=0.98, (5)LMS with 户=。.02 and (6)SMI in the­
ory.

Performances of the proposed configurations 
were compared for different algorithms in terms 
of beampattern and frequency response. Fig. 9 
and Fig. 10 show beampatterns at the frequency 
of 900 Hz and frequency responses of the pro­
posed scheme, respectively. Results were evalu­

ated for k=100. From Fig. 9, it can be seen that 
sidelobes are reduced in angular intervals — 25°< 
0< ~40° and 40°<0<50° where scatters are loc­
ated. We can also see that the exact LS methods 
perform better than the nonexact methods. Simi­
lar results can be observed from Fig. 10 where 
both clutter sources in look direction are cor­
rectly rejected for all the algorithms.

For each adapted weight vector, experimental 
detection probability (Pd) versus SNR curves are 
generated by evaluating the Q-function[l]:

s

3

2
-
5

(0.0

0.0

-90 -40 -25 0 4Q 50 90
Direction (degree)

(1)
'(2)

Fig 9. Beampatterns of the proposed configuration for 
different algorithms: (l)SMI, (2)MLGS. (3) 
RMGS. (4)SG and (5)LMS.

Pd = Q
|a|? I WT(k)^* I? 

w(k) Mx(k) w*(k)
2 log—(6.3)

where Pfa was set to a constant and a was cho­
sen to give some desired value of SNR according 
to

SNR= |al2sTMx^(k)s*. (6.4)

In detection tests, we examined the experimental 
Pd for SNR values in the range of 0 to 20 dB in 
1-dB increment. To study the effect of the sample 
size K on the detector performance, we con­
sidered the case K=36. 54, 72. The resulting Pd 
vers니s SNR curves are shown in Fig. 11 and Fig.
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(b)

(c)

타g 11. Pd versus SNR for different sample numbers. 
(DMF, (2)AMF in theory and (3)proposed 
config 니！'ation.

Fig \?.. Pd versus SNR of the configuration in Fig. 5 
for different algorithms : RMGS(2), SG(3)and 
LMSU). Pd values of the MF is shown(l).
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12, where Pd of the matched filter(MF) versus 
比은 SNR curve evaluated at Pfa = l.Ox 10~3 and 
the theoretical Pd of the AMF detector versus 
SNR curve[3] are given. Considering Figs. 11(a) 
-(c), the proposed configuration shows a compar­
able bahavior to the theoretical AMF detector in 
the detection performance. The SNR loss relative 
to the MF detector improved in accordance with 
the increase of K and the detection performance 
degrades systematically with decreasing K as 
w이L Figs. 12(a)-(c) show the Pd versus SNR 
curves for the configuration in Fig. 5, where the 
RMGS, SG and LMS algorithms are considered. 
The detection performances are all quite similar 
to the results in Fig. 8. The LMS algorithm 
shows poor results since the orthogonality be­
tween the output error and the reference input is 
not satisfied until the sample index reaches to 
corresponding K values in contrast to the RMGS 
algorithm.

Finally, performances of the lattice-GS struc­
ture are demonstrated. Simulations were perfor­
med with the same parameters listed in Table 1. 
Initial convergence behaviors of the GS and lat- 
tice-GS predictors were compared in terms of in­
stantaneous output SIR values. Fig. 13 shows 
output SNR curves of two approaches when the 
SG algorithm is used. Although the nonexact 
method(SG algorithm) is used, we can see that 
performances of the lattice GS predictor is com-
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고«z
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&
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Fig 13. Output SNR values of the proposed configur­
ation for the case when the SG algorithm is 
used to compute the coefficients of the GS(1) 
and lattice-GS(2) structures.

parable to the res니ts of the GS structure. Simi­
lar results can be observed from beampatterns 
and frequency responses shown in Fig. 14 and 
Fig. 15, respectively.

N=6 
이 = 3 
K=IOO

Frequency (Hz) 3000.0

Fig 14. Beampatterns of the proposed configuration for 
the cases when the GS(1) and lattice-GS(2) 
structures are considered.
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Fig 15. Frequency responses of the proposed configur­
ation for the cases when the GS(1) and 
lattice-GS(2) structures are considered. (3) 
shows the spectrum of the background clutter.

ML S니mmary

An efficient method of implementing the SMI 
procedure has been developed based on the Cho* 
lesky decomposition of the inverse covariance 
matrix. According to 나lis method, we have com­
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bined adaptive beamforming and detection algori­
thms in a unified configuration. The proposed con­
figuration is a numerically more efficient alterna­
tive to the SMI algorithm, but does not require 
the explicit estimation of either the sample co­
variance matrix or the Cholesky factor.

To obtain the Cholesky factor of the inverse 
covariance matrix, a multi-channel adaptive GS 
processor which operates on the secondary inputs 
is comprised in the configuration. Instead of for­
ming the Choelsky factor explicitly, parameters 
estimated in the process of the GS orthogonaliz­
ation are directly applied to two nonadaptive GS 
processors which operate on the primary data and 
the steering vector, respectively. In this way, the 
input and target vectors are transformed by the 
Cholesky factor. Thus, the proposed configur­
ation has the advantage of systolic processing 
architectures which ensure the arithmetic ef­
ficiency. It has been shown that the proposed 
method provides a very fast rate of convergence 
and comparable performance to theoretical SMI 
results when algorithms computing the exact LS 
solution were used.

We have developed another configuration, where 
the secondary inputs have not been included, to 
overcome nonhomogeneous environments. This is 
a very useful configuration especially for the case 
when the target signals are encountered in­
frequently and do not compete significantly with 
the incoming energy. Also, we have applied a 
computationally attractive lattice-GS structure to 
the proposed configurations. A multichannel lat­
tice-GS structure requires 3N2 coefficients to im­
plement its ith stage, which is a big saving com­
pared with what we have to pay to completely 
decorrelate the reference signals using only the 
GS structure in which the computational load 
increases at the rate of (MN)2.
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