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Adaptive Beamforming and Detection Algorithms
Based on the Cholesky Decomposition of
the Inverse Covariance Matnx
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ABSTRACT

The sample matrix inversion{SMI} procedure may suffer from severe computational complexity as well as numeri-
cal instability. In this paper, a method which is a numerically more efficient alternative to the SMI procedure is
proposed based on the Cholesky decomposition of the inverse covariance matrix. According to this method, adaptive
beamforming and detection algerithms are combined in a unified configuration, where the Cholesky factor of the mn-
verse sample covariance matrix is estimated using a Gram Schmidt(GS) processor which directly operates on the
secondary inputs, The main feature of this configuration is that neither the covariance matrix nor the Cholesky fac-
tor needs to be estimated explicitly, in addition, the arithmetic efficiency of the proposed configuration results from
using systolic processing architectures that take advantage of the GS processor. Computer simulations are conduc-
ted to show that the proposed cenfiguration shows comparable performance to the theoretical SMI results, Another
configuration which does not involve the secondary inputs is also developed to overcome nonhomogeneous
environments, and a computationaily attractive lattice-GS structure is considered to reduce the computational com-

plexity of the GS structure.
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L. Introduction noise (interference) which is assumed to be Gaus-

sian, but whose covariance matrix is totally un-

The objective of an adaptive detector is to de- known. Brennan and Reed[1] derived a beamfor-
tect a target of known form in the presence of mer equation to maximize the probability of de-

tection, However, the exact application of an op-
A.S.S.P. Lab, Dept. Electronic Eng., Yonsei Unv,

BrL7:1993, 4, 17

timum detection scheme requires a priori knowl-
edge of the noise covariance matrix, Usually in pr-
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actice, this covariance matrix is not available and
must be estimated using an adaptive technique.

In |6], Reed et al. evaluated the performance
of an adaptive beamformer, where the sample matr-
ix inversion(SMI} procedure was developed. The
SM1 procedure uses two sets of data:the pri-
mary data, where the known signal may exist and
the secondary inputs, which are assumed to con-
tain only noise. An estimatc of the noise covari-
ance is directly formed by using independent sec
ondary inputs, which is i1 used in place of the
true covariance in the weight voctor equation, To
generate the beamfornic: oid;vet, the estiniated
weight vector 15 applied to the prunary vector.
Finally, the output of the bearnformer is compar-
ed with a threshold for signal dctection, The per-
formance of the above procedurc was well analy-
zed in | 6]. However, the test statistics in [6] do-
es not provide constant false alarm rate(CFAR)
behavior since the terc i1s no rule to determine
the threshold to achieve a given probabilily of
false alarm{Pfa). A generalization of lhe CFAR
detectors was made by Kelly[2] Kelly derived
the generahized likelihood ratic test{GLRT} which
is independent of both the level and the structure
of the true covariance. Robey et al.| 3] also pro
posed a CFFAR detector called the adaptive mat
ched filter(AMF'},

Both the GLRT as well as the AMF tesl neces
sarily use the SMI procedure to estimate and in
vert a sample covariance matrix. As noted in [6],
the SMI technique converges with the smallest
possible number of samples, but requires heavy
computational load and suffers from numerical in
stahility, To overcome such problems, Cholesky
decomposition technique can be apphied[7 ], When
the dimension of the covariance matrix 1s lavge.
the Cholesky decomposition technique aboul half
the operations required by direct matrix inver
sion, Nevertheless, the main difficulty of the Cho-
lesky decomposition approach is that 1t requires
the explicit formation of the sample covariance
matnx as in the SMI procedure( 7 |.

One way to further incrcase the computational

and numerical efficiency of the Cholesky de-
composition method is to employ Gram-Schmidt
(GS) orthogonalization| 8], As a result of the GS
orthogonalization of the input data, the inverse
covariance nutnx can be decomposed into the
product of a lower triangular matrix and its com
plex transpose. This transformation is called Lhe
Cholesky decomposition of the inverse covariance
matrix| 8].

[t this paper, an efficient method of implement-
ing the adaptive algorithms which concerns the
SMI procedure is developed based on the Cho-
lesky decomposition of the inverse covanance
matrix. This is an alternative method of the SMI
procedure, but provides numerically more cof-
ficient performances than the SMI since it avods
hoth the estimation as well as the nversion of
the sample covariance matrix. According to the
developed method, adaptive beamformer and de-
tectors are combined 1n a umfied structure, To
estimate the lower triangular matrix{called the
Cholesky factor}, a GS processor which performs
a sertes of orthogonal projections using the sec
ondary nputs in a systematic manner is compri
sed in the developed configuration. The main fea
ture of the configuration is that neither the co-
variance matrix nor the Cholesky factor needs to
be estimated explicitly. Instea, parameters estim-
ated in the process of GS orthogonalization are
directly applied to two nonadaptive GS proces-
sors which operate on the primary data and the
steering vector, respectively. In addition, the ari-
thmetic efficiency of the proposed configuration
results from using systolic processing architect-
urcs that take advantage of the GS processor,

Another configuration implementing adaptive
beamforming and detection algorithms based on
the primary data is developed to overcome the
problem of the limited secondary inputs, which
may occur In severely nonhomogeneous environ-
ments, Alse, a computationally ctficient lattice
GS structure is considered to reduce the com-
putational cormplexity of the GS structure,

This paper is organized as follows. In Section
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[I, we briefly review the adaptive array proces-
sing algorithms, A configuration unifying the ad-
aptive realization of the beamformer and the de-
tector is described in Section 0. A solution to
the problem of the limited secondary inputs is
presented in Section [V and a computationally at-
tractive lattice -GS structure is applied to the
proposed configuration in Section V. In Section
VI, we present simulation results, Finally, Section
VI summarizes our results.

[. Adaptive Array Processing Algorithms

In an array processor, a data vector is compo-
sed of samples from several sensors. Fig.1 illustr-
ates an array processor with N array elements
and M taps. Let rT(k)=[x (k) x2(k) - xn{k) ] de-
note a sample vector at time k. The L{=NxM)
-dimensional primary data vector which may con-
tain 4 signal or a target return consists of M
sample vectors :

k)~ [Tk ~D - Tk—M+1D ] (21)

The input data is commonly assumed to be a com
plex Gaussian random vector with mean 0 under
hypothesis HO), mean a3 under hypothesis H1, and
covariance matrix Mx(k). Here, s and a denote a
known steering vector in the look direction and
an unknown complex scalar, respectively.

Now, the detection problem can be written as

x(k} =as +nlk) ‘H1 (2.2a)
x(k) =n(k} ‘HO (2.2b)

where n(k) denotes an interference(noise + clut-
ter) vector. For Gaussian distributed interference
with known covariance matrix M,{k), Brennan and
Reed(l] derived an optima} beamformer maxi-
mizing the probability of detection whose weight
vector is given by

w=c¢ My (i) s (2.3)
Maximizing the log likelihood-ratio with respect
to the unknown complex amplitude a yields the
maximum-likelihood{ML) estimate of a|4,5] :

R RIS (2.4)
T e M k) st

and the generalized likclihood-ratio test(GLRT)
is[4,5] :

E(k)_M_'_I(k)_Slz ">l' Y (25)
MRS ”

The main difference between two problems of

beamforming and detection s that we are con-
cerned with a decision rule for target presence,

THRESHOLD

ENVELOPE .
DETECTOR [ P|COMPARATOR [ et s

Fig 1. Schematic diagram of an array doppler processor
with N elements and M taps.
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rather than a filter which will reduce the inter-
ference before the data are passed on for further
processing and eventually detection|2]. It can be
seen from the GLRT equation that the beamfor
ming process accompanied by the nulling of inter-
ference seems to be a preliminary step in the de-
tection process. From this point of view, the
GLRT can be divided into two processing steps @
firstly, a beamfornwr perforrmng a prelhminary
processing step produces its output as

yik) x"tk) w, (2.6}

where the weight vector for conventional weight-
ing of the sample vector x{k) is given by (2.3).
From (2.4) and (2.6), it can be found that y(k)
becomes the ML estimate of « when ¢= J/{g’
M, 'ik}s*}. Next the beamformer output is pas
sed on to the detector to be tested for target de
tivr. When = 1, the GLRT can be rewritten as

I
ly(k} e 2 78 (2.7)

Fln

where the threshold ¥ is multiplied by a scalar
constant ¢ =sTM, '(k)s* which is a normalization
tactor to provide the desired CFAR behavior, If
the interference covanance matnix were known,
then we would use the optimum detector for tar-
get detection. In practice, however, the covari
anre matrix is unknown and must be estimated
by usmg an adaptive technique.

For practical consideration, it is commonly as-
sumed that there exist a set of secondary data
vectors x'(k}, x*(k), ... x*(k), which are K indepen
dent and identically distributed L-vanate com-
plex vectors. The sample covariance matrix ba
sed on these secondary inpuls is| 4|

1

Mok = o etk o, (2.8)

1=

Reed et al.[6] have characterized the perform
ance of an adaplive beamformer in which My(k)
15 substituled in piace of ALGKY in the beamfor-

mer cguation,

Kelly[2] derived the GLRT for the problem in
which the primary and secondary data vectors
were given and both & and M, (k) were unknown

parameters. The resulting test is

'r(k) I\AAK-I{k) »2 H1
_ | : Sl _———— 2 Kn.

. A <
s' M, R s O /KY XHROM TR Xk
{2.9)

Robey et al.|3] also proposed a simplified test
statistic that was a himiting case ot the GLRT,
called the adaptive matched filter{ AMF) test :

4 - e M
It My ol Y

Y. (2.10)

:\'l' I\:_{K. i(k ) 5 :<

In addition to the constant false alarm rate
(CFAR) behavior, both tests in (2.9} and (2.10)
have comparable performance to signals aligned
with the assumed direction of arrivall3]. As pre-
viously stated, the ML estimate of the inter-
ference covariance must be formed and then
inverted to implement both the GLRT as well as
the AMF test.

In the next section, we present a method of
implementing the adaptive heamforming and de-
tection algorithms based on the Cholesky de-

composition of the inverse covanance matrix.

[il. A Configuration Unifying the tmplementation
of Adaptive Beamforming and Detection
Algorithms

Under the hypothesis Hy, sample data vector
consists of mmterferences, We can apply the GS
orthogonalization to the returned echoes to obtain
statistically independent random vanables, Con
sider a (S-transformed vector d"(k) =[{du(k?} dy
(k)...di-tk}] given by

dlk)=L,x(k}. (3.1}

where the GS transformation matrix Ly is a lower

tnangular matnx whose diagonal elements are all
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onel8]. Now d(k) is zero-mean Gaussian random
variable, and its covariance matrix 1s a diagonal
matrix whose diagonal elements are given by out-

put sample powers :

Rulk) = La*Malk) Lq"

=diagtPqnlk), Pa{k), ..., PaL-(k}} (3.2)

where P.(k)==E{ld;(k)I?!. Using (3.2}, the inverse
of M,(k) is decomposed into the product of a
lower triangular matrix and its complex frans
pose, called the Cholesky decomposition] 7} :

M, Hk)=L4"Ry ‘(k)Lq¢*
=AT(k) A*(k) (3.3}

where the Cholesky factor Atk) = Rq™"V*(k) La.
which is also a lower triangular matrix whose di-
agonal elements are P, Y(k), 0<i<L- 1,

Defining a whitened vector x.(k) = A(k} x{k),
x.(k) is zero-mean Gaussian random variable with
cov riance matrix equal to Ip, (L x L) identity ma-
trix. By inverting the Cholesky factor, we can ev-
aluate the beamformer output :

yik) == x k)M, " Hk)s" = (A k)X (k) TM, M (k)s?
=x,"(k}sa* (3.4)

where s, denotes a transformed sieering vector:s;
= Afk)s. When ¢ =1, we can see that the weight
vector in {(2,3) can be rewritten as

w=AT(Kk)s,". (3.5)
Also, we can evaluate the normalization factor :

8 =s"M, (k)" = s ATk TML T HOCA (KD e,

:§aT§a‘ (3.6)

Now we can obtain a simple GLRT by substitut-
ing the inner products in {2.7}. It should be noted
that the actual covariance does not appear in (3.
4}~{3.6), and thus the test statistics avoids both

the formation as well as the inversion of the co-
variance matrix.

As previously noted, we can reconfigure the
beamforming and detection algorithms in simple
forms using the Cholesky decomposition tech-
mque. The Cholesky factor of the inverse covari-
ance matrix, however, requires the GS tranform-
ation matrix L4, Morover, an adaptive technique
is required to estimate A(k) according to the
statistical variation of the secondary inputs(i.e.
array environment ),

From the assumption that there exist K inde-
pendent secondary vectors, we can define the
(L xK) secondary data matrix X.(k) as

X k) = [_x‘(k)g”-(k}...)_('((k)]. (3.7)

The MI]. estimate of interference covartance
matrix can be rewritten as
]

M.(k) = XoT0) X" (k). (3.8)

After partitioning X;"(k) as

XeMk) ]

H == 5
X" (k) [ e Gk)

(3.9
a vector orthogonal to Xi-"{k) is generated us-
ing the (L—1)th order linear predictor estimating
yL-1I''{k) using the rest X;. H(k), We may solve
the system of normal equations to estimate a tap
weight vector of the (L —1)th order predictor. In
the process of estimating the tap weight vector
the SMI is a compulsory procedure(8].

We can aiso use the GS structure to generate a
vector which is orthogonal ta X; -\" (k). The GS
processor produces different sets of mutually un-
correlated random variables in a sequential fa-
shion, and the variable in each set is uncorrelated
with those in the preceding set[9]. A multi-chan-
nel GS structure is illustrated in Fig. 2 for M=N
=2(i,e. [.=4). Operations of the GS predictor
are based upon elementary processing units. For
K inputs per channel, coefficients of the elemen-

tary processing units are deterrmuned asl 10]



52 The Journal of the Acoustical Society of Korea, Vol. 12. No. 2E (1993)
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MULTICHANNEL GS TRANSFORMER

Fig 2. Schematic diagram of a multi-channel GS pro-

cessor for M=N=2,

K

ZI e-1+1tk—m)e - +1"(k—m)

aiy(k) =—"— _———— - -
7 lei-1lk —m) |
I1<i<N-1, 1<)<N-1, (3.10)

In [10], equivalence between the SMI and GS al-
gorithms has been proved by showing that d; -,
(k) is orthogonal to X;{k) as the prediction error
vector of the (L—1)th order linear predictor do-
es[10]. For convenience, this algorithm will be
called the maximum-likelihood GS{MLGS).

Recursive equations for the GS structure are
summarized as[9]

e (k¥ =e -, +1(k}—a, -11(k),
1<i<N-—[. 1<j<N-i (3.1

Final output of the GS processor is given by

d,_(k)=alk) X k), (3.12)

ac-i{k) represents the equivalent tap weight 9] :
aTtk) =ul La(k). (3.13)

where w." =[00...01] denotes a vector picking
out the last row in the transformation matrix,

To complete the GS orthogonalization of input

data, equivalent tap weight vectors correspond-
ing Lo successive orders less than {L—1} must be
computed. However, the GS processor produces
different sets of mutually uncorrelated random
variables 1n a sequential manner, and the variable
in each set is uncorrelated with those in the pre
ceding set. Thus, each stage of the GS processor
produces uncorrelated output vectors by perform-
ing the GS orthogonalization. Defining an (LXK)
transformed data matrix as

DH{k)= [d‘{k) gk} - dK(k)} T La(k) X Mik),
(3.14)

i3 covariance matrix can be expressed as

D' (k) D*(k) = Ly(k) Mc(k) L'tk)
(3.15)

l -
K Rak) =

which is a diagonal matrix whose diagoal elemen-
ts are given hy the averaged powers of the trans:

formed samples :

"1...(k)f--:{ < ldv 1, o<isL-L (3.16)

From (3.15). we can write the inverse of the
ML estimate of the clutter covanance as

M. '(k)=f,"'(k)[[1{ lid{k)] 'Ltk
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= AT(k) A*(K) (3.17)

where _,_:f},_(k) 15 the desired Cholesky factor of the
matrix M, k) :

A(k)=[% Ru(k) | 7 Latk). (3.18)

Now consider the transformed vectors : X.(k) =
Alk)x(k) and s,(k)=A(k)s. We can evaluate the
beamformer output

yik) =x,T(k} s.(k). (3.19)
and the scalars
3(k)=é,."'(k)§‘.'(k}. £(k) =x."(k) x.5(k) (3.20}

From (3.19) and (3.20), we can see that the be-
amformer output depends on the primary and ste-
ering vectors only through an inner product. When
these inner products are substituted into the
GLRT in {2.9), we obtain

H1

(VU1 2 KysU) i1 +H(/K)atk)! (321
Ho

Also, the AMF test can be expressed in a simple

form:

LT

1vik) 2 2 8k)Y (3.22)
H

According to {3.19), (3.21) and (3.22), we can
derive a configuration implementing the adaptive
beamforming and detection algorithms in a nu-
merically efficient manner as illustrated in Fig, 3.
The proposed scheme comprises an adaptive multi-
channel GS processor which operates on the scc-
ondary data vectors to implement the GS orth

ogonalization. Based on the estimated parameters
of the adaptive processor, the Cholesky factor of
l\;‘l, '(k} is determined as (3.18). The estimated
Cholesky factor is, in turn, applied to the primary
data veclor x{k) and the target vector s, respect-
ively, Finally, the inner products in {3,19) and (3.

201) are computed to have the beamformer output

Secon, .

DaaVeortes hmary - Tamet
EAIRIRY o 1 9] ) s
Multichannel A A
GS Processor Alk) Alk)

2@ L 40
A 4 A
=50 % £09= 4100 2:()
YORRWSE | Tk
v A 4
Retection Tests
* GLRT
A
() 2 KN8K) [1+ €K} k—— Threshold
* AMF 1est n
Iy 2 Y8(k)
! )

Beamlonmer
Qurput: Ho/ Hy

Fig 3. Contiguration unifying the implementation of the
adapive beamformer and detectors,

or the test statistics for the detection of a target.

An important feature of the proposed configur-
ation is that neither the sample covariance matrix
nor the Cholesky factor needs to be estimated ex-
plicitly. Instead, parameters estimated in the pro-
cess of the GS orthogonalization are directly ap-
plied to two nonadaptive GGS processors which op-

A
AK)
Copy parameters
from
the adaptive
GS processor
pis(k)

£.(k) and 4,(k)

Fig 4. GS processor transforming the input vectors
with the estimated Cholesky factor.
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erate on the primary data and the steenng vec
tor, respectively. Fig. 4 shows the structure of a
GS processor transforming input vectors using

the estimated Cholesky factor.

V. Adaptive Array Processing Based on Primary
Data Vectors

A configuration realizing the adaptive beamfor-
mung and detection algorithms without the SMI
procedure has been derived under the assumption
that there exists a set mutually independent sec
ondary vectors. The performance of the SMI te
chmque cntically depends on the size of the sec
ondary data set which is very limited in severely
nonhomogeneous environments, But if the target
signals occur infrequently and do not compete
significantly with the incoming noise encrgy, the
interference covariance can be estimated from
primary data vectors|6].

Suppose that a separate coherent output 1s av-
ailable from each receiving array element. In this
case, one approach to the adaptive estimation of
the time-varving covariance 15 to introduce the
exponentially lime-averaged estimator :

M. k) =AM, (k—1) + (12 (K)x"(k)  (4.1)

where 0< A< 1 is a forgetting factor.

Applying input sequence to a multichannel GS
processor, we get the decorrelated output sampl-
es. The best way of estimating the GS transform-
ation matrix from a coherent sequence is the moe-
dified GS{MGS) algorithm[11] which performs
better than the other orthogonal transformation
algorithms such as Householder, and Givens al-
gorithms, as far as numerical accuracy is concern-
ed[7]. Recently, a recursive form of the MGS
(RMGS) was proposed(12]. The RMGS performs
exact LS estimation and its computational com-
plexity is similar to that of the conventional re
cursive LS(RLS) algorithm[12].

Using the RMGS algorithm, we can attain the
L-dimensional output vector q' (k) =[qe(k) g, (k)

-+ qi.o1(k) |, with covariance matrix En(k). ﬁﬂ(k)
18 a diagonal matrix whose diagonal elements are

given by exponentially time-averaged estimates ©

Pok) =AP, (k—1)4+{1-2) | q k)12
D<igl—1. (4.2)

Consequently, the desired Cholesky factor is
Al - RGO 1Y L (k) (4.3)

Now we can obtain the modified beamformer
equation und detection tests by replacing A,T(k)
A_q‘(k) 1n place of M,"'(k). From (4.3), we can der-
wve another configuration realizing the adaptive be
amforming and detection algorithms in a numeri:
cally efficient manner, This configuration does not
include the secondary vectors as illustrated in

Primary Target
Data Vector Vector
x(k) s

Multi-channel
GS Processor

A

Normalize with
PR(K), 0 S 1.1 £09

; £,

y)=21() &) | S0=81a04 ()

Detection Test
Iy@I” 2 ¥8(k)

b

Beamformer
Qurput: Ho/ Hh

l4——— Threshold

Fig 5 Configuration not concerning the secondary
Inputs.
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Fig. 5. In Fig, 5, an adaptive multi-channel GS
processér which operates directly on the primary
data vector is included, and the estimated Chole-
sky factor is then applied to the target vector in
the same manner as the configuration in Fig, 3.
As previously noted, the transformation of the
target vector is performed by using the GS pro-
cessor instead of estimating the Cholesky factor
explicitly,

The RMGS perfortms the exact LS estimation,
however, the computational complexity is simular
to that of the RLS algorithm| 12]. To remedy this
problem, nonexact LS techniques can be used.
An example of the nonexact LS method is the
least-mean-square (LMS) algorithm. The LMS al-
gorithm(13] is widely used due to its effective.
ness as well as its ssimplicity, The adaptive GS fil-
ter whose coeffictents are updated using the
LMS algorithm has been extensively studied for
various applications(8.9]. To improve the slow
convergence of the LMS algorithm, the norma-
lized LMS algorithm can be used(8]. The stan-
dard gradient{SG) algorithm{13] is a normalize-
type LMS algorithm, which was derived to im-
plement the Burg's harmonic-mean algorithm in a
recursive way for the LS lattice algorithm, The
SG algorithm can be easily applied for the GS
processor.

When the LMS algorithm is used, we have an
estimate of the inverse covariance matrix :

S(k) =L,T(k) D (k) L,* (k)
= AdT(K) A7 (k) (4.4)

where

D(k) = diag{ Pao(k), . Pau-i(k}} (4.5)

and ﬁ’u,.(k), 0<i<L—1, are exponentially time-
averaged power estimates of q{k). From (4,4),
we get an estimate of the Cholesky factor :

AT(k) =D M2(k) Lo(k). (1.6)

We may use the estimate S(k) in place of M,"!

(k) in both the beamformer equation and the de-
tection tests, Regardless of the simplicity of the
LMS algorithm, the main drawback is that its
convergence speed depends on the eigenvalue
spread ratio of the reference input covariance
[13]. Thus, it does not guarantee convergence
with a small number of dala samples, and the
orthogonality between the output error and the
reference tnput is satisfied only after the weights
converge to their optimal values in contrast to
the RMGS aigorithm,

V. Consideration of the Lattice-GS Structure

The GS orthogonalization procedure can be im-
plemented using a lattice or a GS structure. The
lattice structure has been widely used for various
applications[8]. In a multi-channel lattice struc-
ture, it is known[8] that the backward prediction
error vectors produced at the different stages are
mutually orthogonal. However, the elements of
an error vector are still correlated. Thus, the co-
variance matrix of the prediction error vector is a
block diagonal matrix. It has been reported[9]
that the predictor having the GS structure out-
performs the lattice counterpart, since the GS
predictor completely orthogonaizes the reference

‘signals. Although complete orthogonalization can

be achieved with the GS structure, a major sh-
ortcoming of applying the GS structure to the
proposed configuration is the heavy computation-
al load which increases at the rate of (MN)2,

As an effort of overcoming this problem, the
multi-channel lattice-GS hybrid structure[ 15,16]
was proposed. The multi-channel lattice-GS stru-
cture was attained by using the GS linear com-
biner in place of the linear combiner summing the
weighted elements of the error vectors of the
multi-channel lattice structure[15,16]. In the lat-
tice-GS structure, the prediction error vectors
are penerated by using the lattice structure and
the elements of the error vectors are decorrelated
by using the GS structure, Fig. 6 shows the i-th
stage of the lattice-GS structure,
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fi® fin (&)

Pi k) by, (k)

GS transformed vector
at the ith stage

Fig 6. Block diagram of the i-th stage of the lattice-GS
structure,

Order updates for the lattice-GS structure are
summarized as

fnlk) = filk) =75, Blk—1), (5.1a)
b =bilk~ 1) ~¥,\" Gk), 1<i<M, (51b)
where f,(k} and b{k)} are the {(Nx 1) forward and
backward prediction error veclors at the ith st
age, respectively, ({k} and 8,(k) are the GS-tr
ansformed versions of f(k) and bitk). In this
case, partial correlations arc defined as

Y00 SELfk) 81k ], (5.2a)
Yok =E| ko bk ], (5.2b)
Now 1he covariance matrix of 8(k) is given by

Ralk) = Lg* (k) Mx(k) Ls"(k). (5.3)

which 1s naturally a diagonal matrix, We can use
(5.3) to obtain the Cholesky factor of the inverse
of M,(k) as following :

AlkY =Rz "2(k) La(k) (5.4)

To implement the i-th stage of the multi-chan-
nel lattice-GS structure, 3N- coefficients are re-
quired ; this 1s a big save compared with what we
have to pay to completely decorrelate the refer-

ence signals using only the GS structurel]6].

Total number of coefficients required to implem-
ent the multi-channel predictor using the GS and

the lattice-GS structures can be summarized as

GS  MN{MN-13/2
lattice = GS 1 3N(N—-1MtM - 1)+ NIN-1}/2.

¥ig. 7 shows the total number of coefficients of &
GS and a lattice GS structures for N=6. We can
see that the computational effectivess of the lat-
tice GS structure increasee in proportion to the
increase of the taps, Thus, computational effec-
tiveness is ensured when the lattice-GS structure
is applied to the proposed configurations in Fig. 3
and Fig. 5 in place of the GS structure, This ef-
fecliveness is emphasized by the increase of the
array dimension.

When the coefficients of the lattice GS predic-
tor are determined in the exact LS sense based
on the K independent secondary data vectors, the
inverse of the sample covariance matrix van be
partitioned into the product of the Cholesky fac-
tor and its complex transpose. To estimate the
Cholesky factor using the lattice- GS structure, it
1s required to combine the multi-channel LS lat-
tice and RMGS algorithms! 15]. But gradient-ty-
pe algorithms such as the LMS and the SG can
be used to have a more computationally attract-
Ive configuration,

2000

GS

Number of Coeflicients

Number of Taps

Fig 7. Total number of coefficients of the multi-chan-
nel GS and lattice-GS structure for N=§,
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VI. Simulation Results and Discussion

In this section, performances of the proposed
approach are evaluated and compared with the
theoretical SMI results via computer simulations,

For experimental purposes, it was assumed that
the array had six sensor elements on a line spaced
with the distance of half-wavelength and each el-
ement had three taps (MN=18}. The environme
nt had 12 independent interference sources which
were restricted to two angular regions, —25°<#<
—40" and 40°<0<50°. In the look direction two
independent interferers were included, Interfer-
ence signals were presumed to have the Gaus-
sian-shaped frequency spectrum. Gaussian inter-
ferences for computer simulations were generated
using the discrete Fourier transform{DFT) me-
thodl 17]. Parameters assumed in the simulations
are hsted in Table 1.

Table 1. Interference pararneters for computer simulations,

N=5 M=3
d/x=10.5 where d=distance between the adjacentsensors,
Omnidirectional sensor patterns.
2 interference sources in look direction :

fu=0 foo=0.1fs

m—0.99 p:=0.98

CNR,=40dB CNR,=40dB
4 interference sources are equally spaced in the region
40° <0< 50°
6 interference sources are equally spaced in the region
—25°< o< — 40"
All interference sources in the sidelobe region have
the same parameters :

f.=0.3fs

p=10.95

CNR=40dB

The steady-state covariance matrix M, was fir-
st computed from 4,000 independent secondary
data vectors. From this, optimum weight vector
of the GLRT detector was obtained from (2.3).
This weight, in turn, were then used to compute
the steady-state signal-to-noise ratio(SNR) to be
22.8 dB. To compare initial convergence behav-
iors, we computed the instantaneous output SNR

values defined as

[s"wik}|*
SNR{k)dB—=10logy——F" _ . {6.1)
wH{k) M, w(k)
where the weight vector w{k) was computed from
the estimated Cholesky factor :

wik) = A"(k) a*(k), (6.2)

Initial values of the output SNR of the pro-
posed method and the theoretical SMI curve are
illustrated in Fig. 8, where the theoretical SMI
curve was obtained from the SMI theory[5). Cor-
responding plots of SNR values were obtained by
ensemble averaging over 20 independent trials of
simulations, For the SMI[ and RMGS algorithms,
number of samples implies the number of second-
ary vectors with which the covariances are aver-
aged. More secondary vectors imply an accurate
eslimation of the matrix and reduced SNR loss
accornpanied by a longer transient time(5]. For
the RMGS, SG and the LMS algorithms, the
number of samples denotes the number of inde-
pendent data vectors(i.e. the number of primary
vectors},

The exact LS methods{MLGS and RMGS)
show a rapid convergence rate to the steady-state
SNR value of 22.8 dB and the comparable per-
formance to the theoretical SMI. Also, as expe-
cted, the proposed configuration shows the same
results as the SMI algorithm when the MLGS al-
gorithm is used. The SG algorithm shows slower
convergence speed than the case of the exact LS
algorithms. The LMS algorithm shows the worst
performance in terms of the convergence speed,
however, simplicity and effectiveness are the ma-
in advantages of the I.MS algorithm. It was ob-
served that the exponential window methods(SG
and RMGS) were accompanied by the steady-
state variations of SNR values caused by the ex-
ponential weighting factor 2 which was introdu
ced to ensure that the data in the distant past
were forgotton in order to track the changing en.

vironment, It is knoewn that the steady-state and
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transient performance can be trade off in several
ways according to different parameters to be
used. In the simulations, 0.002 and (.98 were used
for p and A values, respectively. Those values
were experimentally determined to have the same
steady-state variances.

8O

)

Owpwt SNE (4B)

Stweady-sue SNR ~ 22.8 dB

° Number of Verwn b

Fig 8. Output SNR values of the proposed configur-
ation for different algorithms: (1)SMI, (2)
MLGS, (3)RMGS with a=09. (4)5G with A
=0.98, {S)LMS with 4—0.02 and (6)SMI in the-
ory.

Performances of the proposed configurations
were compared for different algorithms in terms
of beampattern and frequency response. Fig. 9
and Fig, 10 show beampatterns at the frequency
of 900 Hz and frequency responses of the pro-
posed scheme, respectively. Results were evalu-

GAIN (dB)

700 A
90 A0 -25 0 4G 50 9%
Dicection {(degree)

Fig 9. Beampatterns of the proposed configuration for
different  algorithms : {1)SMI, (2}MLGS, (3!
RMGS, (4)SG and (5H.MS,

10.0
0.0

a

2

z

£

o %
i
EF 4
A 3
;‘-—(3) @) 5 N=6 )
‘ M=3

K=100
£50.0 4 + ! + + t + +
0.0 3000.0

Frequency (Hz)

Fig 10. Frequency responses of the proposed configur-
ation in the look direction, (1)SMI, (2)MLGS,
{DRMGS, (4)8G and (5)LMS. (6)shows the
spectrum of the background clutter.

ated for k=100. From Fig. 9, it can be seen that
sidelobes are reduced in angular intervals —25°<
< —40" and 40°<0<50" where scatters are loc
ated. We can also see that the exact LS methods
perform better than the noncxact methods, Simi-
lar resuits can be observed from Fig. 10 where
both clutter sources in look direction are cor-
rectly rejected for all the algorithms,

For each adapted weight vector, experimental
detection probability{Pd)} versus SNR curves are
generated by evaluating the Q- function[1] :

P Q[ Ll 1wt £ 2 log — ] (6.3)
I e —— . 2o )
1 wik} M, (k) w* (k) £ Pta

where Pfa was set to a constanl and o« was cho-
sen to give some desired value of SNR according
Lo

SNR = lal‘s"M, (k) s". (6.4)

[n detection tests, we examined the experimental
Pd for SNR values in the range of ¢} to 20 dB in
I-dB increment, To study the effect of the sample
size K on the detector performnance, we con-
sidered the case K 36, 54, 72. The resulting Pd

versus SNR curves are shown in Fig. 11 and Fig,
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1.0 1.0

1 N =6
X M =3
K = 36
+ Pfa = le.3
; a m 7
Pd 1 7 Pd T

00 R sl , " N

00 SNR(dB) 20.0 0.0 SNR(dB) 20.0
(2) @
10 -
1 N - 6 ._, ’J"’
m c @
- M =3 29 e
I K = 54
+ Pfa = le-3
oa 1
- e : . 0o b el
0.0 SNR(dB) 2040 0.0 SNR(d8) 200
(b} (b)
1.0 1.0
T T N =6
1 ! M3
K = 118
+ 4 Pfa = le-3
P4 T
T ‘.' '
T Ty :
-+~
0.0 f=mif PP _ —
0.0 SNR(dB) 20.0 0.0 SNR(4B) 20.0
© {c)
Fig 11. Pd versus SNR for different sample numbers, fig 12. Pd versus SNR of the configuration \n Fig. 5
(1}MF, (2)AMF n theory and (3)proposed for different algorithms : RMGS(2), SG(3) and

configuration, LMSt4}. Pd values of the MF is shown(1},
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12, where Pd of the matched filter(MF) versus
the SNR curve evaluated at Pfa=1.0x10"* and
the theoretical Pd of the AMF detcctor versus
SNR curve[3] are given. Considering Figs. 11(a)
-(¢), the proposed configuration shows a compar-
able bahavior to the theoretical AMF detector in
the detection performance, The SNR loss relative
to the MF detector improved in accordance with
the increase of K and the detection performance
degrades systematically with decreasing K as
well, Figs. 12(a)-{c) show the Pd versus SNR
curves for the configuration in Fig. 5, where the
RMGS, SG and LMS algorithms are considered.
The detection performances are all quitce similar
to the results in Fig. 8. The LMS algorithm
shows poor results since the orthoponality be-
tween the output error and the reference input is
not satisfied until the sample index rcaches to
corresponding K values in contrast to the RMGS
algorithm,

Finally, performances of the lattice GS struc-
ture are demonstrated. Simulations were perfor
med with the same parameters histed in Table 1.
Initial convergence behaviors of the GS and lat-
tice-GS predictors were compared in terms of in-
stantaneous output SIR values. Fig. 13 shows
output SNR curves of two approaches when the
SG algorithm 1s used. Although the nonexact
method(SG algorithm) is used, we can see that
performances of the lattice-GS predictor 1s com

Dumput SHR (a8

Sweady-sae SNR = 22.8 dB

0o

L4
- Number of Yecwrs 00

Fig 13. Output SNR values of the proposed configur-

ation for the case when the SG algonthm is

used to compute the coefficients of the GS(1}
and lattice-GS(2) structures,

parable to the results of the GS structure. Simu-
lar results can be observed from beampatterns
and frequency responses shown n Fig. 14 and

Fig. 15, respectively.

10.0
OAO ...........................
a
2
é s ‘.‘. .;/-,‘. :,\‘ AAA .’,\;r-:.‘. ¥
3 YAVAVAVAY
1) M=3
L K =100
£0.0 + + +
o
Frequency (H2) 300.0

Fig 14. Beampatierns of the proposed configuration for
the cases when the GS(1}) and lattice-GS(2)
structures are considered.,

10.0
0.0 1
s-
2
z |
<
D H
N=6 s
M=3 :
K=100
.70_0.'¢,55 .AA,J+f
90 40 25 0 40 50 %

Directisa {degree)

Fig 15. Frequency responses of the proposed configur-
ation for the cases when the GS(1) and
lattice-GS{2) structures are considered. (3}
shows the spectrum of the background clutter,

M. Summary

An efficient method of implementing the SMI
procedure has been developed based on the Cho-
lesky decomposition of the inverse covariance

matrix. According to this method, we have com-
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bined adaptive beamforming and detection algori-
thms in @ unified configuration. The proposed con-
figuration is a numerically more efficient alterna:
tive to the SMI algorithm, but does not require
the explicit estimation of either the sample co-
variance matrix or the Cholesky factor.

To obtain the Cholesky factor of the inversc
covartance matrix, a multi-channel adaptive GS
processor which operates on the secondary inputs
is comprised in the configuration. lnstead of for-
ming the Choelsky factor explicitly. parameters
estimated in the process of the S wrthogonaliz-
ation are directly applied (0 two ronadaptive GS
processors which operate on the primary data and
the steering vector, respectively. In this way, the
input and target vectors are transformed by the
Cholesky factor, Thus, the proposed configur-
ation has the advantage of systolic processing
architectures which ensure the arithmetic ef
ficiency. 1t has been shown that the proposed
method provides a very fast rate of convergence
and comparable performance to theoretical SMI
results when algorithms computing the exact 1.5
solution were used,

We have developed another configuration, where
the secondary inputs have not been included, to
overcome nonhomogeneous environments. This is
a very useful configuration especially for the case
when the target signals are encountered in-
frequentily and do not compete sigruficantly with
the incoming energy. Alsc, we have applied a
computationally attractive lattice-GS structure to
the proposed configurations. A multichannel lat-
tice-GS structure requires 3N? coefficients to im-
plement its ith stage, which is a big saving com-
pared with what we have to pay to completely
decorrelate the reference signals using only the
GS structure in which the computational load

increases at the rate of (MN)2
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