• Title/Summary/Keyword: Choking Gas

Search Result 29, Processing Time 0.023 seconds

Analysis of Compressible Flow Fields in a High Voltage Gas Circuit Breaker (초고압 가스차단기 내부의 압축성 유동장 해석)

  • Lee, J.C.;Oh, I.S.;Kim, Y.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.305-310
    • /
    • 2001
  • This paper presents the computational method for analyzing the compressible flow fields in a high voltage gas circuit breaker. There are many difficult problems in analyzing the gas flow in GCB due to complex geometry, moving boundary, shock wave and so on. In particular, the distortion problem of the grid due to the movement of moving parts can be worked out by the fixed grid technique. Numerical simulations are based on a fully implicit finite volume method of the compressible Reynolds-averaged Navier-Stokes equations to obtain the pressure, density, and velocity through the entire interruption process. The presented method is applied to the real circuit breaker model and the pressure in front of the piston is good agreement with the experimental one.

  • PDF

Performance Evaluation of the Gas Turbine for Integrated Ossification Combined Cycle (석탄가스화 복합발전용 가스터빈의 성능 평가)

  • Lee, Chan;Lee, Jin-Wook;Yun, Yong-Seung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.2 no.1 s.2
    • /
    • pp.7-14
    • /
    • 1999
  • This simulation method is developed by using GateCycle code for the performance evaluation of the gas turbine in IGCC(Integrated Gasification Combined Cycle) power plant that uses clean coal gas fuel derived from coal gasification and gas clean-up processes and it is integrated with ASU(Air Separation Unit). In the present simulation method, thermodynamic calculation procedure is incorporated with compressor performance map and expander choking models for considering the off-design effects due to coal gas firing and ASU integration. With the clean coal gases produced through commercially available chemical processes, their compatibility as IGCC gas turbine fuel is investigated in the aspects the overall performance of the gas turbine system. The predictions by the present method show that the reduction of the air extraction from gas turbine to ASU results in a remarkable increase in the efficiency and net power of gas turbines, but it is accompanied with a shift of compressor operation point toward to surge limit. In addition, the present analysis results reveal the influence of compressor performance characteristics of gas turbine have to be carefully examined in designing the ASU integration process and evaluating the overall performance parameters of the gas turbine in IGCC Power plant.

  • PDF

An Analytical Study for Critical Mass Flowrate of Compressed Water (압축수의 임계유량에 관한 해석적 연구)

  • 김희동;김재형;한민교;박경암
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.1
    • /
    • pp.57-65
    • /
    • 2003
  • As a compressed water is rapidly expanded through a nozzle, two-phase flow of vapor and liquid is formed in the nozzle due to the flash evaporation. In the present study, critical flow of two-phase fluids is analysized using an Isentropic-Homogeneous-Equilibrium model and a Leung model. Calculation results show that the choke of the two-phase flow can be two different types of continuous and discontinuous chokings. For the stagnation pressure below 10 Mpa it is found that the continuous choking, which is similar to the choking phenomenon of single-phase gas flow, is possible only when the degree of subcooling is less than 10K.

Analytical Study on the Gas-Solid Suspension Flows through Sonic and Supersonic Nozzles (음속 및 초음속 노즐을 통한 Gas-Solid Suspension 유동에 대한 해석적 연구)

  • Sun, JianGuo;Rajesh, G.;Kim, Heuydong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.9-17
    • /
    • 2013
  • A considerable deal of work has been carried out to get an insight into the gas-solid suspension flows and to specify the particle motion and its influence on the gas flow field. In this paper an attempt is made to develop an analytical model to study the effect of nozzle inlet/exit pressure ratio, particle/gas loading and the particle diameter effect on gas-solid suspension flow. The effect of the particle/gas loading on the mass flow, Mach number, thrust coefficient and static pressure variation through the nozzle is analyzed. The results obtained show that the presence of particles seems to reduce the strength of the shock wave. It is also found that smaller the particle diameter is, bigger will be the velocity as bigger particle will have larger slip velocity. The suspension flow of smaller diameter particles has almost same trend as that of single phase flow with ideal gas as working fluid. Depending on the ambient pressure, the thrust coefficient is found to be higher for larger particle/gas loading or back pressure ratio.

Hot Firing Tests of a Gas Generator for Liquid Rocket Engine using a Turbine Manifold Simulator (터빈 매니폴드 모사장치를 이용한 액체로켓엔진 가스발생기 연소시험)

  • Lim, Byoungjik;Kim, Munki;Kim, Jonggyu;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.22-30
    • /
    • 2015
  • A gas generator which generates turbine driving gas by burning a part of propellants is used in an open cycle liquid rocket engine and as a main component of an open cycle liquid rocket engine autonomous hot firing tests are required to investigate the combustion performance and characteristics of the gas generator. However, since the combustion gas generated by a gas generator is choked at the turbine nozzle in the turbine manifold, it is necessary to consider the internal volume of turbine manifold as well as that of the gas generator for correct investigation of the combustion performance, characteristics, and acoustic characteristics of the gas generator. Therefore, in the paper hot firing test results of a gas generator with a turbine manifold simulator are described and characteristic prediction using the autonomous test of a gas generator is explained.

Theoretical and Computational Analyses of Bernoulli Levitation Flows (베르누이 부상유동의 이론해석 및 수치해석 연구)

  • Nam, Jong Soon;Kim, Gyu Wan;Kim, Jin Hyeon;Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.7
    • /
    • pp.629-636
    • /
    • 2013
  • Pneumatic levitation is based upon Bernoulli's principle. However, this method is known to require a large gas flow rate that can lead to an increase in the cost of products. In this case, the gas flow rate should be increased, and the compressible effects of the gas may be of practical importance. In the present study, a computational fluid dynamics method has been used to obtain insights into Bernoulli levitation flows. Three-dimensional compressible Navier-Stokes equations in combination with the SST k-${\omega}$ turbulence model were solved using a fully implicit finite volume scheme. The gas flow rate, workpiece diameter,and clearance gap between the workpiece and the circular cylinder were varied to investigate the flow characteristics inside. It is known that there is an optimal clearance gap for the lifting force and that increasing the supply gas flow rate results in a larger lifting force.

Comparison of Respiratory Symptom between Urban and Rural Residents (도시주민(都市住民)과 농촌주민(農村住民)의 호흡기증상(呼吸器症狀))

  • Yoon, Jung-Suk;Kim, Doo-Hie
    • Journal of Preventive Medicine and Public Health
    • /
    • v.18 no.1
    • /
    • pp.113-127
    • /
    • 1985
  • This paper was carried out for comparison of respiratory symptoms between urban and rural residents that is somewhat related to air pollution. And as urban residents, 470 persons of Daegu (Taegu) and 364 of Pohang were selected and 472 rural residents were also, in Eusong-Gun, those who were responded to questionnaire distributed from April 10, 1984 to April 30 through students of middle or high school. The subjects were families of the student. The questionnaire was appropriately modified the item B of Cornell Medical Index by author. Looking into the rate of complaints about each part, generally, the rate in urban is higher than that in rural. Particulary it is higher to 'feeling a choking lump or swelling of throat', 'the sputum' and 'the asthma' in the city (p<0.05). On the contrary, women in the farm village, to 'caught a severe cold' as compared with the city. In men under nineteen yearn of age, it is higher than the farm village to 'feeling a choking lump or swelling of throat' of Pohang (p<0.05). But in men forties, it is higher than the city that farm people are 'soaking sweat at night' and 'foreign body sensation on throat'. Students hardly differ between the two areas, while the group having occupation in Pohang felt more in 'feeling a choking lump or swelling of throat' than the farm residents. As the result, I consider that the rural residents were much affected by physical fatigue and pestisides, and the urban, by some problems of industrial fuel, traffic gas and various dusts.

  • PDF

Comprehensive Consideration on the Discharge of Gases from Pressurized Vessels through Pressure Relief Devices (압력용기로부터 압력방출장치를 통한 가스 방출에 관한 포괄적 고찰)

  • Chung, Chang-Bock
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.6
    • /
    • pp.32-45
    • /
    • 2020
  • The problem of determining the discharge rates of gases from pressurized vessels through pressure relief devices was dealt with comprehensively. First, starting from basic fluid flow equations, detailed modeling procedures were presented for isentropic nozzle flows and frictional flows in a pipe, respectively. Meanwhile, physical explanations were given to choking phenomena in terms of the acoustic velocity, elucidating the widespread use of Mach numbers in gas flow models. Frictional flows in a pipe were classified into adiabatic, isothermal, and general flows according to the heat transfer situation around the pipe, but the adiabatic flow model was recommended suitable for gas discharge through pressure relief devices. Next, for the isentropic nozzle flow followed by adiabatic frictional flow in the pipe, two equations were established for two unknowns that consist of the Mach numbers at the inlet and outlet of the pipe, respectively. The relationship among the ratio of downstream reservoir pressure to upstream pressure, mass flux, and total frictional loss coefficient was shown in various forms of MATLAB 2-D plot, 3-D surface plot and contour plot. Then, the profiles of gas properties and velocity in the pipe section were traced. A method to quantify the relationship among the pressure head, velocity head, and total friction loss was presented, and was used in inferring that the rapid increase in gas velocity in the region approaching the choked flow at the pipe outlet is attributed to the conversion of internal energy to kinetic energy. Finally, the Levenspiel chart reproduced in this work was compared with the Lapple chart used in API 521 Standatd.

Analytical Study on Compressible Plow through Abrupt Enlargement and Contraction (급축소/확대관을 지나는 압축성 유동의 해석적 연구)

  • 김희동;김태호;서태원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.55-63
    • /
    • 1997
  • The empirical factor and reaction force based on published data were involved to investigate compressible flows through sudden enlargement and sudden contraction passages. Analytical solutions of engineering interest were obtained from one-dimensional steady compressible gas dynamic equations. The effects of com- pressibility, cross-sectional area ratio, and inlet Mach number on the air flows were discussed with regards to the total pressure loss and flow choking. The present results provide available information necessary to design the compressible pipe flow systems.

  • PDF

Modeling of Nozzle Flow Inside a Y-JET Twin-Fluid Atomizer (Y-JET 2-유체 분무노즐 내부유동의 모델링)

  • In, Wang-Kee;Lee, Sang-Yong;Song, Si-Hong
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.7 s.94
    • /
    • pp.1841-1850
    • /
    • 1993
  • A simplified one-dimensional analysis has been performed to predict the local pressure distributions in Y-Jet twin-fluid atomizers. Fluid compressibility was considered both in the gas(air) and two-phase(mixing) ports. The annular-mist flow model was adopted to analyze the flow in the mixing port. A series of experiments also has been performed; the results show that the air flow rate increases and the liquid flow rate decreases with the increase of the air injection pressure and/or with the decrease of the liquid injection pressure. From the measured injection pressures and flow rates, the appropriate constants for the correlations of the pressure loss coefficients and the rate of drop entrainment were decided. The local pressures inside the nozzle by prediction reasonably agree with those by the experiments.