• Title/Summary/Keyword: Chitosan carrier

Search Result 46, Processing Time 0.023 seconds

Chitosan and Its Derivatives for Gene Delivery

  • Lee, Knen-Yong
    • Macromolecular Research
    • /
    • v.15 no.3
    • /
    • pp.195-201
    • /
    • 2007
  • Non-viral vectors, including lipid- or polymer-based systems, have attracted much attention to date as a gene delivery vehicle, due to safety issues with viral vectors. Chitosan, a naturally existing cationic polymer, has shown great potential as a gene delivery carrier, as it has low immunogenicity and toxicity, excellent transcellular transport ability, and is relatively easy to chemically modify. This review summarizes and discusses the general features of chitosan and its applications as a delivery carrier of DNA and RNA.

Preparation of Chitosan-Gold and Chitosan-Silver Nanodrug Carrier Using QDs (QDs를 이용한 키토산-골드와 키토산-실버 나노약물전달체 제조)

  • Lee, Yong-Choon;Kang, Ik-Joong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.200-205
    • /
    • 2016
  • A drug transport carrier could be used for safe send of drugs to the affected region in a human body. The chitosan is adequate for the drug delivery carrier because of adaptable to living body. The gold, a metallic nanoparticles, tends to form a nano complex at rapidly when it combined with chitosan because of its negative charge. having energy from the other, outer gold nano-complex make heat due to its property to release the contained drugs to the target area. Silver could be also formed an useful biocompatible nano-composites with chitosan which should be used as an useful drug transfer carrier because its special ability to protect microbial contamination. Being one of the oxidized nano metals, $Fe_3O_4$ is nontoxic and has been used for its magnetic characteristics. In this study, the control of catalyst, reducing agent, and solvent amount. The chitosan-$Fe_3O_4$-gold & silver nanoshell have been changed to form about 100 nm size by ionic bond between the amine group, an end group of chitosan, and the metal. It was observed the change in order to seek for its optimum reaction condition as a drug transfer carrier.

Thermosensitive Chitosan as an Injectable Carrier for Local Drug Delivery

  • Bae Jin-Woo;Go Dong-Hyun;Park Ki-Dong;Lee Seung-Jin
    • Macromolecular Research
    • /
    • v.14 no.4
    • /
    • pp.461-465
    • /
    • 2006
  • Two types of injectable system using thermosensitive chitosan (chitosan-g-NIPAAm), hydrogel and microparticles (MPs)-embedded hydrogel were developed as drug carriers for controlled release and their pharmaceutical potentials were investigated. 5-Fluorouracil (5-FU)-loaded, biodegradable PLGA MPs were prepared by a double emulsion method and then simply mixed with an aqueous solution of thermosensitive chitosan at room temperature. All 5-FU release rates from the hydrogel matrix were faster than bovine serum albumin (BSA), possibly due to the difference in the molecular weight of the drugs. The 5-FU release profile from MPs-embedded hydrogel was shown to reduce the burst effect and exhibit nearly zero-order release behavior from the beginning of each initial stage. Thus, these MPs-embedded hydrogels, as well as thermosensitive chitosan hydrogel, have promising potential as an injectable drug carrier for pharmaceutical applications.

Controlled Release of Silymarin from Chitosan Carrier (Chitosan을 이용한 Silymarin의 방출 제어)

  • Ho, Byuong-Kyun;Park, Kyung-Ock;Kang, Chin-Yang;Seo, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • v.25 no.1
    • /
    • pp.37-46
    • /
    • 1995
  • The experiment was designed to investigate the sustained release dosage form of silymarin (SL) from chitosan (CS) carrier. Solid dispersed system was prepared by mixing the drug with chitosan. This solid dispersed system was cross-linked by glutaraldehyde, formaldehyde, acetaldehyde and butylaldehyde, respectively. The dissolution rates of these preparations were compared with each other in vitro. The silymarin was mired with anionic alginate gel and bead was prepared by dropping this mixture to cationic chitosan solution including calcium chloride. Chitosan encapsulated alginate bead after drying in the oven was investigated for the dissolution rate. The dissolution rate of SL-CS mixture was delayed with increase in the amounts of CS and the concentration of aldehyde. The effect on the delay of dissolution rate was in the increasing order of formaldehyde, glutaraldehyde, acetaldehyde, butylaldehyde. The dissolution rate of chitosan encapsulated alginate bead was parallel with the concentration of chitosan in diluted hydrochloric acid solution and delayed with increase in the concentration of chitosan in phosphate buffer solution.

  • PDF

Novel Gene Delivery Carrier Using Chitosan-Lipoic Acid Comb-Type Copolymer (키토산-리포산 빗살형 공중합체를 이용한 유전자 전달체 개발)

  • Kwon, Sang-Kyoo;Kim, Sung-Wan;Kim, Young-Jin
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.501-506
    • /
    • 2010
  • Natural chitosan has high molecular weight and the poor solubility in water. Water-soluble chitosan with low molecular weight was prepared by the hydrolysis method. In order to develop an efficient gene delivery carrier, chitosan was conjugated with lipoic acid to form the comb-type copolymer. The copolymer with the amphiphilic property formed the self-assembled nanoparticles in the aqueous solution. The average size of nanoparticles was 217.6 nm and the average size of nanoparticles/DNA complex was 170 nm. New chitosan-lipoic acid copolymer showed the low cytotoxicity and 10 times higher transfection efficiency than that of the pure chitosan.

Lipoic Acid Conjugated Chitosan Copolymer for the Delivery of 5-Fluorouracil (5-Fluorouracil 전달을 위한 리포산이 결합된 키토산 공중합체)

  • Lee, Sun-Young;Kim, Young-Jin
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.149-154
    • /
    • 2012
  • The amphiphilic copolymer by the conjugation of biocompatible chitosan and antioxidant lipoic acid was studied as a drug delivery carrier. The amphiphilic copolymer was self-assembled to form nanoparticles in the aqueous solution. 5-Fluorouracil widely used as an anticancer drug was encapsulated inside the nanoparticles by a solid dispersion method. The degree of branching of lipoic acid on chitosan was controlled to obtain the optimal condition for the drug delivery carrier. The sizes of nanoparticles were about 250 nm by the dynamic light scattering. The encapsulation efficiency of nanoparticles were about 10%. The copolymer with 42% degree of branching showed the best performance as a drug delivery carrier.

Insecticidal effects of Chitosan-formulated etofenprox and α-cypermethrin against Myzus persicae and Aphis gossypii (Homoptera: Aphididae) (키토산 캐리어 나노제형의 α-cypermethrin과 etofenprox의 목화진딧물과 복숭아혹진딧물에 대한 살충효과)

  • Seo, Mi-Ja;Kang, Min-Ah;Kwon, Hye-Ri;Yoon, Kyu-Sik;Kang, Eun-Jin;Yu, Yong-Man;Youn, Young-Nam;Youn, Young-Nam
    • Korean journal of applied entomology
    • /
    • v.49 no.4
    • /
    • pp.333-342
    • /
    • 2010
  • The possibility of commercializing the controlled release of chitosan carrier nano formulation was examined with mortalities and population increase rates of Aphis gossypii and Myzus persicae after treatment of 2 ${\alpha}$-cypermethrin nano type formulations of different chitosan carrier molecular weight (M.W. 3,000 and 30,000) and 2 etofenprox nano types of chitosan content (70% and 80%). After 14 days of treatment, ${\alpha}$-cypermethrin nano formulation showed over 40% mortality against A. gossypii. Therefore, it was confirmed that the insecticide release was controlled through chitosan carrier. Results of the investigation of insecticidal activity of ${\alpha}$-cypermethrin nano formulation showed there were no differences between nano types at 4 days after treatment. However, after 14 days, the population increase rate treated with chitosan M.W. 30,000 formulation was -0.037, much lower than that of M.W. 3,000 formulation with 0.231. The result exhibits that chitosan M.W. 30,000 formulation would be a suitable controlled release formulation. On the other hand, etofenprox formulations didn't show any significant insecticidal effect or persistency difference against both aphid species.

Regioselective Acylation on Glycol Chitosan (글라이콜 키토산의 위치선택적 아실화)

  • Lee, Wonbum;Park, Chong-Rae
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.04a
    • /
    • pp.297-298
    • /
    • 2003
  • Chitin is a natural biopolymer that, with its derivative chitosan, has been represented as a biomaterial with considerable potential in wide ranging medical applications. But there are some limitations in using chitosan as attained, for instance, the problem of water solubility$^1$. In order to use chitosan in various applications (e.g. drug carrier), chemical modifications are often necessary$^2$. (omitted)

  • PDF

Sustained Release Properties of Vitamin C in Chitosan Molecular network (키토산 분자네트 워크속에서 비타민 C의 지속적 방출 특성)

  • Han Sang-Mun
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.2 s.56
    • /
    • pp.33-38
    • /
    • 2005
  • Chitosan is a dietary fiber because of a linear polysaccharide composed of $\beta-(1{\rightarrow}4)$-linked 2-amino-2-deoxy-D-glucopyranose. In this study, control release system of vitamin C has been estimated in chitosan molecular network as a vitamin C carrier of controlled release. The amount of released vitamin C were decreased in higher amount of chitosan concentration. Especially, vitamin C were slowly released from chitosan solution in dialysis membrane when compared with vitamin C solution alone in dialysis membrane. These result assumed that chitosan driving force is dependent on chitosan molecular weight and cationic property of amino group with anionic property of vitamin C.

Preparation and Characterization of Low Molecular Weight Water Soluble Chitosan Gene Carrier Fractioned according to Molecular Weight (저분자량 수용성 키토산이 분급화된 유전자 전달체의 제조 및 특성)

  • Jang, Min-Ja;Kim, Dong-Gon;Jeong, Young-Il;Jang, Mi-Kyeong;Nah, Jae-Woon
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.555-561
    • /
    • 2007
  • To obtain low molecular weight water soluble chitosan (LMWSC) with various molecular weights, chitosan oligosaccharides (COS) with lactic acid was separated by using ultrafilteration technique and LMWSC with a free amine group was prepared by the novel salts-removal method. The characterization of LMWSC removed the lactic acid and degree of deacetylation (DDA) were identified by FT-IR and $^1H-NMR$ spectra. Polydispersity index (PDI) was $1.278{\sim}1.499$, which indicates a relatively molecular weight distribution. To identify the potential as a gene carrier, we confirmed the transfection efficiency of COS fractioned according to molecular weight successfully and the salt-removed LMWSC using 293T cell. Also, LMWSC derivatives prepared for improvement transfection efficiency were evaluated using Balb/C mice.