• Title/Summary/Keyword: Chip on chip technology

Search Result 1,650, Processing Time 0.024 seconds

BIST implemetation with test points insertion (테스트 포인트 삽입에 의한 내장형 자체 테스트 구현)

  • 장윤석;이정한김동욱
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.1069-1072
    • /
    • 1998
  • Recently the development of design and automation technology and manufacturing method, has reduced the cost of chip, but it becomes more difficult to test IC chip because test technique doesn't keep up with these techniques. In case of IC testing, obtaining test vectors to be able to detect good chip or bad one is very important, but according to increasing complexity, it is very complex and difficult. Another problem is that during testing, there could be capability of physical and electrical damage on chip. Also there is difficulty in synchronization between CUT (circuit under test) and Test equipment〔1〕. Because of these difficulties, built in self test has been proposed. Not only obtaining test vectors but also reducing test time becomes hot issues nowadays. This paper presents a new test BIST(built in self test) method. Proposed BIST implementation reduces test time and obtains high fault coverage. By searching internal nodes in which are inserted test_point_cells〔2〕and allocating TPG(test pattern generation) stages, test length becomes much shorter.

  • PDF

Estimation of the Maximum Undeformed Chip Thickness Using the Average Grain Model (평균입자 연삭모델에 의한 최대미변형칩두께의 예측)

  • Lee, Y.M.;Choi, W.S.;Son, J.H.;Bae, D.W.;Son, S.P.;Hwang, K.S.
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.2
    • /
    • pp.30-36
    • /
    • 2007
  • In order to estimate the maximum undeformed chip thickness in grinding operation, it is necessary to obtain the successive cutting point spacing. In the past it was obtained by experiments. In this paper, the average successive cutting point spacing has been obtained using the given grinding input conditions and it is possible to estimate the maximum undeformed chip thickness without using any experimentally obtained data. The validity of the proposed analysis has been verified based on two sets of grinding scratch tests using WA and CBN grinding wheels.

A study on the orthogonal cutting characteristics of glass fiber reinforced plastics (복합재료의 직교 절삭가공 특성에 관한 연구)

  • 송화용;정용운;김준현;김주현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.155-160
    • /
    • 2001
  • In the use of glass fiber reinforced plastics(GFRP) it is often necessary to cut the components, but the cutting of GFRP is often made difficult by the delamination of the compositions and short tool life. Experimental investigation was conducted to evaluate the chip formation of the glass fiber reinforced plastics during orthogonal cutting. The chip formation process, cutting force, and thrust force were studied. The chip formation processes were studied through the use of quick-stop device. Chip-tool contact areas were obtained with the use of the quick-stop device, and observed using optical microscopy after polishing. Cutting force and thrust force were measured through the use of the tool dynamometer.

  • PDF

Wear and Chip Formation by the Tool on Cutting Nickel-based Heat Resisting Alloy (니켈기 내열합금 절삭기 공구에 따른 마모와 칩생성)

  • 김우순;김경우;김동현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.1
    • /
    • pp.30-35
    • /
    • 2001
  • Nickel-based heat resisting alloys are commonly used for high temperature application such as in aircraft engines and gas turbines. In this paper, the machinability of Nickel-based heat resisting alloys was investigated with respect to the wear and the chip formation by tool type and cutting condition. Relationship between three types of tool and chip formation was experimentally investigated. Among the three types of tool tested, coated tools(CVD, PVD) ara available for the difficult-to-cut-materials such as Nickel-based heat resisting alloys and etc.

  • PDF

High speed milling titanium alloy (Ti 합금의 고속가공시 밀링특성에 관한 연구)

  • Ming CHEN;Youngmoon LEE;Seunghan YANG;Seungil CHANG
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.454-459
    • /
    • 2003
  • The paper will present chip formation mechanism and surface integrity generation mechanism based on the systematical experimental tests. Some basic factors such as the end milling cutter tooth number, cutting forces, cutting temperature, cutting vibration, the chip status, the surface roughness, the hardness distribution and the metallographic texture of the machined surface layer are involved. the chip formation mechanism is typical thermal plastic shear localization at high cutting speed with less number og shear ribbons and bigger shear angle than at low speed, which means lack of chip deformation. The high cutting speed with much more cutting teeth will be beneficial to the reduction of cutting forces, enlarge machining stability region, depression of temperature increment, auti-fatigability as well as surface roughness. The burrs always exists both at low cutting speed and at high cutting speed. So the deburr process should be arranged for milling titanium alloy in any case.

  • PDF

Wear and chip Formation by the tool on cutting Nickel-based Heat Resisting Alloy (니켈기 내열합금 절삭시 공구에 따른 마모와 칩생성)

  • 윤주식
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.264-269
    • /
    • 2000
  • Nickel-based heat resisting alloys are commonly used for high temperature applications such as in aircraft engines and gas turbines. In this paper, the machinability of Nickel-based heat resisting alloy was investigated with respect to the wear and the chip formation by tool type and cutting condition. Relationship between three types of tool and chip formation was experimentally investigated. Among the three types of tool tested, coated tools(CVD, PVD) are available for the difficult-to-cut-materials such as Nickel-based heat resisting alloy and etc..

  • PDF

Fabrication of a multi-functional one-chip sensor for detecting water depth, temperature, and conductivity (수위, 온도, 전도도 측정을 위한 다기능 One-Chip 센서의 제조)

  • Song, Nak-Chun;Cho, Yong-Soo;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.7-12
    • /
    • 2006
  • The multi-functional one-chip sensor has been fabricated to reduce output variation under various water environment. There were a temperature sensor, a piezoresistive type pressure sensor, and a electrode type conductivity sensor in the fabricated one-chip sensor. This sensor was measured water depth in the range of $0{\sim}180cm$, temperature in the range of $0{\sim}50^{\circ}C$, and salinity in the range of 0 $0wt%{\sim}5wt%$, respectively. Since the change of water depth in solution environment depends on various factors such as salinity, latitude, temperature, and atmospheric pressure, the water depth sensor is needed to be compensated. We tried to compensate the salinity and temperature dependence for the pressure in water by using lookup-table method.

Design of Multilayer Ceramic Chip Band Pass Filter with an Attenuation Pole (감쇠극을 갖는 적층형 세라믹 칩 필터의 설계)

  • 강종윤;심성훈;최지원;박용욱;이동윤;윤석진;김현재
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.740-743
    • /
    • 2003
  • A multi-layer ceramic (MLC) chip type band-pass filter (BPF) is presented. The MLC chip BPF has the benefits of low cost and small size. The BPF consists of coulped stripline resonators and coupling capacitors. The BPF is designed to have an attenuation pole at below the passband for a receiver band of IMT-2000 handset. The computer-aided design technology is applied for analysis of the BPF frequency characteristics. The passband and attenuation pole depend on the coupling between resonators and coupling capacitance. The frequency characterics of the passband and attenuation pole are analyzed with the variation of the coupling between resonators and coupling capacitance. An equivanlent circuit and structure of MLC chip BPF are proposed. The frequency characteristics of the BPF is well acceptable for IMT-2000 application.

SNP Detection Using DNA Chip (DNA칩을 이용한 SNP의 검출)

  • Choi, Yong-Sung;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1319-1321
    • /
    • 2006
  • This research aims to develop the multiple channel electrochemical DNA chip that has the above characteristic and be able to solve the problems. At first, we fabricated a high integration type DNA chip array by lithography technology. It is able to detect a plural genes electrochemically after immobilization of a plural probe DNA and hybridization of non-labeling target DNA on the electrodes simultaneously. It suggested that this DNA chip could recognize the sequence specific genes. It suggested that multichannel electrochemical DNA microarray is useful to develop a portable device for clinical gene diagnostic system.

  • PDF

CSP + HDI : MCM!

  • Bauer, Charles-E.
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.35-40
    • /
    • 2000
  • MCM technology languished troughout most of the 1990's due to high costs resulting from low yields and issues with known god die. During the last five years of the decade new developments in chip scale packages and high density, build up multi-layer printed wiring boards created new opportunities to design and produce ultra miniaturized modules using conventional surface mount manufacturing capabilities. Focus on the miniaturization of substrate based packages such as ball grid arrays (BGAs) resulted in chip scale packages (CSPs) offering many of the benefits of flip chip along with the handling, testing, manufacturing and reliability capabilities of packaged deviced. New developments in the PWB industry sought to reduce the size, weight, thickness and cost of high density interconnect (HDI) substrates. Shrinking geometries of vias and new constructions significantly increased the interconnect density available for MCM-L applications. This paper describes the most promising CSP and HDI technologies for portable products, high performance computing and dense multi-chip modules.

  • PDF