• Title/Summary/Keyword: Chip Antenna

Search Result 193, Processing Time 0.139 seconds

Implementation of Smart Antenna Beamforming Module Utilizing Signal Processing Chip in CDMA2000 (신호처리 칩을 이용한 CDMA2000 스마트 안테나 빔형성 모듈 구현)

  • Ahn, Sung-Soo
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.38-42
    • /
    • 2010
  • This paper shows that beamfoming module deign to adapt smart antenna system in CDMA2000 environments. The designed beamfroming module has been implemented on a general-purpose DSP as a test-bed to confirm the superior performances based on real-time processing. From the various simulation result, it is confirm that beamforming module is provide a superior beampattern in smart antenna system.

An Omnidirectional Antenna for REID UHF Band Tag (UHF대역 RFID 태그용 전방향성 안테나)

  • Son, Tae-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.2
    • /
    • pp.145-149
    • /
    • 2006
  • UHF band omnidirectional antennas for RFID tag were designed. Crossed loaded dipole and bended dipole were applied to be designed for both miniaturization and omnidirectional radiation pattern. By suppling 90 degrees phase difference between crossed dipoles, omnidirectional E-plane patterns can be obtained. -10 dB reflection coefficients of 3 types dipole antenna which have designed under conjugate matched with input impedance of chip were shown as 670-1,050 MHz, 700-1,250 MHz and 600-1,020 MHz, respectively, and also shown that all antenna have omnidirectional radiation pattern both E and H plane.

  • PDF

An S-Band Multifunction Chip with a Simple Interface for Active Phased Array Base Station Antennas

  • Jeong, Jin-Cheol;Shin, Donghwan;Ju, Inkwon;Yom, In-Bok
    • ETRI Journal
    • /
    • v.35 no.3
    • /
    • pp.378-385
    • /
    • 2013
  • An S-band multifunction chip with a simple interface for an active phased array base station antenna for next-generation mobile communications is designed and fabricated using commercial 0.5-${\mu}m$ GaAs pHEMT technology. To reduce the cost of the module assembly and to reduce the number of chip interfaces for a compact transmit/receive module, a digital serial-to-parallel converter and an active bias circuit are integrated into the designed chip. The chip can be controlled and driven using only five interfaces. With 6-bit phase shifting and 6-bit attenuation, it provides a wideband performance employing a shunt-feedback technique for amplifiers. With a compact size of 16 $mm^2$ ($4mm{\times}4mm$), the proposed chip exhibits a gain of 26 dB, a P1dB of 12 dBm, and a noise figure of 3.5 dB over a wide frequency range of 1.8 GHz to 3.2 GHz.

Analysis of W-CDMA System with Smart Antenna for Angular Spread in Realistic Wideband Multipath Channel (광대역 다중경로 실측 채널에서 스마트 안테나를 적용한 광대역 CDMA 시스템의 각도퍼짐에 따른 성능분석)

  • 전준수;김철성
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.5
    • /
    • pp.527-535
    • /
    • 2003
  • In this paper, the performance of W-CDMA system with smart antenna is analyzed for angular spread in realistic wideband multipath channel. The realistic wideband channel is assumed, one of which is JTC channel model. And each multipath is assumed as a reflective wave from only one direction (only one cluster) in space. Several multipaths within one chip are distinguished into each one and the strongest signal is selected. As a result, the performance of the W-CDMA system with smart antenna in realistic wideband multipath channel has been considerably improved in proportion to the increase of angular spread.

Bandwidth Enhancement for the GPS Patch Antenna Using the Quadrature Hybrid Chip Circuit (90도 하이브리드 칩 회로를 이용한 GPS용 패치안테나의 광대역화)

  • Son, Taeho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.8
    • /
    • pp.765-768
    • /
    • 2015
  • In this paper, two ports feeding a microstrip patch antenna using a quadrature hybrid circuit was proposed to enhance the bandwidth for the global positioning system(GPS). The square patch was designed, and the probe feeding was applied. The quadrature hybrid chip circuit for two-port feeding was designed, and output ports that have a 90-degree phase difference feed to the patch antenna. The designed patch and quadrature hybrid circuit were implemented on an FR4 board, and were combined. The measurement of the bandwidth within a voltage standing wave ratio(VSWR) of 2: 1 and axial ratio(AR) in 3dB were 29 %BW(1,230~1,700 MHz) and 15.87 %BW(1,400~1,650 MHz), respectively. The peak gain at the GPS center frequency was measured at 2.75 dBi in an anechoic chamber.

UHF-HF Dual-Band RFID Tag Antenna Design for Boxes (박스용 UHF-HF 이중대역 RFID 태그 설계)

  • Nam, Seahyeon;Kang, Juwon;Chung, Youchung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.2
    • /
    • pp.93-98
    • /
    • 2018
  • This paper introduces the development of HF(NFC) and UHF band(13.56 MHz, 920 MHz) tag antennas, imbedded in a box. In dual band antennas, the HF band tag can be used to inspect the box using NFC, and the UHF band tag can be used for logistics. The dielectric constant of the box material is measured and used for simulation. The Ntag213 chip manufactured by NXP is used in HF loop antennas, since NFC is possible with Ntag213. For the UHF band, the Higgs-3 chip manufactured by Alien is used. The HF tag antenna is located at the center of the UHF tag antenna, and the location of the HF tag antenna is calculated while considering coupling effects. The designed tag can be used by both the bands for the purposes of logistics and authentication.

A CPS-type Microstrip Patch Antenna Design for 910MHz RFID Tags (CPS구조를 갖는 910MHz 대역 RFID Tag용 마이크로스트립 패치 안테나 설계)

  • Son, Myung-Sik;Cho, Byung-Mo
    • Journal of IKEEE
    • /
    • v.12 no.3
    • /
    • pp.144-150
    • /
    • 2008
  • This paper describes the design of a coplanar-stripline(CPS) antenna without via hole in microstrip patch type for 910MHz RFID tags using the HFSS simulator. In order to obtain the simplified fabrication design of the antenna, we have used only an impedance matching network to match the impedance of a RFID-tag chip to that of the antenna, not using bandpass filter(BPF). In advance of the optimized antenna design, we have obtained and shown a good agreement compared with the published antenna for 5.8GHz in order to verify the simulation parameters in the HFSS. Based on the verified simulation parameters in the HFSS, we have designed and optimized the 910MHz-CPS-type microstrip patch antenna. The designed simulation results of the antenna show that the proposed antenna is very proper for RFID tags with the 910MHz center frequency without via hole in the microstrip patch antenna.

  • PDF

Design of RFID Passive Tag Antennas in UHF Band (UHF 대역 수동형 RFID 태그 안테나 설계)

  • Cho Chihyun;Choo Hosung;Park Ikmo;Kim Youngkil
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.9 s.100
    • /
    • pp.872-882
    • /
    • 2005
  • In this paper, we examined the operating principle of a passive tag antenna for RFID system in UHF band. Based on the study, we proposed a novel RFID tag antenna which adopts the inductively coupled feeding structure to match antenna impedance to a capacitively loaded commercial tag chip. The proposed tag antenna consists of microstrip lines on a thin PET substrate for low-cost fabrication. The detail structure of the tag antenna were optimized using a full electromagnetic wave simulator of IE3D in conjunction with a Pareto genetic algorithm and the size of the tag antenna can be reduced up to kr=0.27($2 cm^2$). We built some sample antennas and measured the antenna characteristics such as a return loss, an efficiency, and radiation patterns. The readable range of the tag antenna with a commercial RFID system showed about 1 to 3 m.

U-Shaped RFID Tag Antenna with Isotropic Radiation Characteristic (등방성 복사 특성을 가지는 U-형태의 RFID 태그 안테나)

  • Lee, Sang-Woon;Cho, Chi-Hyun;Lee, Kee-Keun;Choo, Ho-Sung;Park, Ik-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.5
    • /
    • pp.523-532
    • /
    • 2008
  • In this paper, we proposed a U-shaped RFID tag antenna with isotropic radiation characteristic for the stable operation of RFID system. The proposed antenna is composed of a U-shaped half wavelength dipole and a rectangular-shaped feed. In order to have good impedance matching with a tag chip, the commercial tag chip is attached to the lower center of the feed. A gain deviation characteristic of the U-shaped tag antenna can be further improved by inserting a rectangular slit in the lower center of the U-shaped antenna body. On the condition of VSWR<2, the tag antennas of two structures satisfy the Korea UHF RFID bandwidth and showed the gain deviation of less than 1.63 dB and 0.74 dB for without slit and with slit, respectively. On the condition of VSWR<5.8, the U-shaped tag antenna showed the gain deviation of less than 3.8 dB and 1.2 dB for without slit and with slit, respectively.

A Study On Design of ZigBee Chip Communication Module for Remote Radiation Measurement (원격 방사선 측정을 위한 ZigBee 원칩형 통신 모듈 설계에 대한 연구)

  • Lee, Joo-Hyun;Lee, Seung-Ho
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.552-558
    • /
    • 2014
  • This paper suggests how to design a ZigBee-chip-based communication module to remotely measure radiation level. The suggested communication module consists of two control processors for the chip as generally required to configure a ZigBee system, and one chip module to configure a ZigBee RF device. The ZigBee-chip-based communication module for remote radiation measurement consists of a wireless communication controller; sensor and high-voltage generator; charger and power supply circuit; wired communication part; and RF circuit and antenna. The wireless communication controller is to control wireless communication for ZigBee and to measure radiation level remotely. The sensor and high-voltage generator generates 500 V in two consecutive series to amplify and filter pulses of radiation detected by G-M Tube. The charger and power supply circuit part is to charge lithium-ion battery and supply power to one-chip processors. The wired communication part serves as a RS-485/422 interface to enable USB interface and wired remote communication for interfacing with PC and debugging. RF circuit and antenna applies an RLC passive component for chip antenna to configure BALUN and antenna impedance matching circuit, allowing wireless communication. After configuring the ZigBee-chip-based communication module, tests were conducted to measure radiation level remotely: data were successfully transmitted in 10-meter and 100-meter distances, measuring radiation level in a remote condition. The communication module allows an environment where radiation level can be remotely measured in an economically beneficial way as it not only consumes less electricity but also costs less. By securing linearity of a radiation measuring device and by minimizing the device itself, it is possible to set up an environment where radiation can be measured in a reliable manner, and radiation level is monitored real-time.