• Title/Summary/Keyword: Chemical structure

Search Result 7,779, Processing Time 0.044 seconds

The Effect of Chemical Composition and Sintering Temperature on The Improvement of Physical Properties of Mn-Zn Ferrites (Mn-Zn ferrite의 성분 및 소결 온도에 따른 물리적 특성의 향상 연구)

  • 고재귀
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.4
    • /
    • pp.269-274
    • /
    • 1995
  • The basic composition of Mn-Zn ferrite was $Mn_{0.631}Zn_{0.316}Fe_{2.053}O_{4}$(specimen A), $Mn_{0.584}Zn_{0.312}Fe_{2.104}O_{4}$(specimen B) and $Mn_{0.538}Zn_{0.308}Fe_{2.154}O_{4}$(specimen C) with additional 0.1 mol % $CaCo_{3}$ and 0.04 mol % $V_{2}O_{5}$. For high per¬meability and acceleration of grain growth, $CaCo_{3}$ and $V_{2}O_{5}$. was added. The mixture of the law materials was calcinated at $950^{\circ}C$ for 3 hours and then milled. The compacts of toroidal type were sintered at different temperature($1250^{\circ}C$, $1300^{\circ}C$, $1350^{\circ}C$) for 2 hours in $N_2$ atmosphere. The effects of the various raw material composition and sintered temperature on the physical properties of Mn-Zn ferrite have been investigated. They turned out to be spinel structure by X-ray diffraction and the size of grain from SEM was from $18\;\mu\textrm{m}\;to\;23\;\mu\textrm{m}$. As the sintering temperature was increased from $1250^{\circ}C$ to $1350^{\circ}C$, the initial permeability and magnetic induction has increased and the both of Q factor and coercive force has decreased. The coercive force and curie temperature were almost the same at each specimen Their values were about 0.45 Oe and $200^{\circ}C$. The frequency of specimen will used in the range from 200 kHz to 2 MHz. The basic composition of $Mn_{0.584}Zn_{0.312}Fe_{2.104}O_{4}$(specimen B) sintered at $1300^{\circ}C$ shows the best results at magnetic induction (Br & Bm).

  • PDF

Characterization on the Behavior of Heavy Metals and Arsenic in the Weathered Tailings of Songcheon Mine (송천광산의 풍화광미 내 중금속 및 비소 거동 특성)

  • Lee, Woo-Chun;Kim, Young-Ho;Cho, Hyen-Goo;Kim, Soon-Oh
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.125-139
    • /
    • 2010
  • Behavior of heavy metals and arsenic in the tailings of Songcheon Au-Ag mine was characterized via both mineralogical and geochemical methods. Mineral composition of the tailings was investigated by X-ray diffractometry, energy-dispersive spectroscopy, and electron probe micro-analyzer (EPMA) and total concentrations of heavy metals and arsenic and their chemical forms were analyzed by total digestion of aqua regia and sequential extraction method, respectively. The results of mineralogical study indicate that the tailings included mineral particles of resinous shape mainly consisting of galena, sphalerite, pyrite, quartz, and scorodite, and specifically socordite was identified in the form of matrix. EPMA quantitative analyses were performed to evaluate the weatherability of each mineral, and the results suggest that it decreased in the sequence of arsenopyrite > galena > sphalerite > pyrite. The weathering pattern of galena was observed to show distinctive zonal structure consisting of secondary minerals such as anglesite and beudantite. In addition, almost all of arsenopyrite has been altered to scorodite existing asmatrix and galena, sphalerite, and pyrite which have lower weatherability than arsenopyrite were identified within the matrix of scorodite. During the process of alteration of arsenopyrite into scorodite, it is likely that a portion of arsenic was lixiviated and caused a great deal of detrimental effects to surrounding environment. The results of EPMA quantitative analyses verify that the stability of scorodite was relatively high and this stable scorodite has restrained the weathering of other primary minerals within tailings as a result of its coating of mineral surfaces. For this reason, Songcheon tailings show the characteristics of the first weathering stage, although they have been exposed to the surface environment for a long time. Based on the overall results of mineralogical and geochemical studies undertaken in this research, if the tailings are kept to be exposed to the surface environment and the weathering process is continuous, not only hazardous heavy metals, such as lead and arsenic seem to be significantly leached out because their larger portions are being partitioned in weakly-bound (highly-mobile) fractions, but the potential of arsenic leaching is likely to be high as the stability of scorodite is gradually decreased. Consequently, it is speculated that the environmental hazard of Songcheon mine is significantly high.

Electrochemical Performance as the Positive Electrode of Polyaniline and Polypyrrole Hollow Sphere with Different Shell Thickness (껍질 두께가 다른 폴리아닐린과 폴리피롤 속 빈 구형체 양전극의 전기화학적 성능)

  • Yun, Su-Ryeon;Hwang, Seung-Gi;Cho, Sung-Woo;Kang, Yongku;Ryu, Kawng-Sun
    • Applied Chemistry for Engineering
    • /
    • v.23 no.2
    • /
    • pp.131-137
    • /
    • 2012
  • Polyaniline (PANI) and polypyrrole (Ppy) hollow sphere structures with controlled shell thicknesses can be easily synthesized than those of using a layer-by-layer method for cathode active material of lithium-ion batteries. Polystyrene (PS) core was synthesized by emulsion polymerization using an anion surfactant. The shell thicknesses of PANI and Ppy were controlled by amounts of aniline and pyrrole monomers. PS was removed by an organic solution. This structure increased in contact with an electrolyte and a specific capacity in lithium-ion batteries. But polymers have disadvantages such as the difficult control of molecular weights and low densities. These disadvantages were completed by controlled shell thicknesses. The amount of aniline monomer increased from 1.2, 2.4, 3.6, 4.8 to 6.0 mL, and the shell thicknesses were 30.2, 38.0, 42.2, 48.2, and 52.4 nm, respectively. And the amount of pyrrole monomer was 0.6, 1.2, 2.4 and 3.6 mL, the shell thicknesses were 16.0, 22.0, 27.0 and 34.0 nm, respectively. In the cathode materials with controlled shell thicknesses, shell thicknesses of the PANI hollow spheres were 30.2, 42.2, and 52.4 nm, and discharge specific capacities of after 10 cycle were ~18, ~29, and ~62 mAh/g, respectively. The shell thicknesses of the Ppy hollow spheres were 16.0, 22.0, 27.0 and 34.0 nm, and discharge specific capacities of after 15 cycle were ~15, ~36, ~56, and ~77 mAh/g, respectively. Thus, shell thicknesses of PANI and Ppy increased, the specific capacities increased.

Studies on the Rapid Discrimination of Yellow Pigments Colored on Yellow Croakers and Natural Yellow Pigment of Croakers (참조기의 천연색소와 인위적으로 착색된 황색색소류 판별법에 관한 연구)

  • Kim, Hee-Yun;Hong, Jin-Hwan;Kim, Dong-Sul;Han, Sang-Bae;Lee, Eun-Ju;Lee, Jeung-Seung;Kang, Kil-Jin;Chung, Hyung-Wook;Song, Kyung-Hee;Park, Hye-Kyung;Park, Jong-Seok;Kwon, Yong-Kwan;Chin, Myung-Shik;Park, Hee-Ok;Oh, Sae-Hwa;Shin, Il-Shik;Lee, Chang-Kook;Park, Hee-Yul;Ha, Sang-Chul;Jo, Jae-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.6
    • /
    • pp.977-983
    • /
    • 2002
  • This study was performed to establish the precise and rapid method to distinguish croakers through the pigment analysis of colored imported white croakers for adultration. We surveyed the coloring behaviors, extraction test by water and organic solvent and using pigments such as targeting, curcumine, and azo dye products. The pigment of yellow croaker is not stained on wet cloth or tissue which is rubbed on epidermis of yellow croaker and was not eluted in water extraction test, while adulterated pigments were easily extracted by water and acetone, but edible diluted yellow, Yellow No. 4 and Yellow No. 5 were not extracted. Reactive pigment was detected easily by extraction with water and dispersed pigment was also detected by extraction test. As a result of discoloring characteristics of carotene having similar structure to yellow croaker and azo dye by oxidation and reduction, azo dyes were not discolored by oxidation with sodium percarbonate or peracetic acid but that were discolored by oxidation with Fenton reagent after 1hr and by hypochlorite promptly. On the other hand, carotenes were not discolored by sodium precarbonate and Fenton reagent but discolored by sodium hypochlorite after 2 hr and by peracetic acid promptly. Azo dyes were discolored by reduction with sodium hydrosulfite and sodium carbonate but carotenes were not discolored by these reagents. This discoloring test was applicable to detect adulterated pigments and other marine product.

Characteristics of Antibacterial Chlorhexidine-Containing Hydroxyapatite Coated on Titanium (타이타늄 상에 코팅된 클로르헥시딘 항균제를 함유한 수산화인회석의 특성)

  • Kim, Min-Hee;Hwang, Moon-Jin;Lee, Woon-Young;Park, Yeong-Joon;Song, Ho-Jun
    • Korean Journal of Dental Materials
    • /
    • v.44 no.3
    • /
    • pp.263-272
    • /
    • 2017
  • In this study, antibacterial chlorhexidine (CHX)-containing hydroxyapatite (HAp) was coated on titanium and investigated its characteristics. Ti-mSBF-CHX group was prepared by soaking titanium disks in the modified simulated body fluid (mSBF) mixed with CHX. Ti-mSBF group was coated using mSBF without CHX. Ti-mSBF-adCHX group was prepared by soaking Ti-mSBF specimen in CHX-containing solution. The crystallines clusters composed with nano-shaped crystallites were coated on the surface of the Ti-mSBF specimen. The ribbon-shaped crystallites were observed with the crystalline clusters on the Ti-mSBF-CHX specimen. The content of CHX chemical compositions was high in ribbon-shaped crystallites. HAp crystalline structure was dominant for all prepared specimens, and ${\beta}-TCP$ (tricalcium phosphate) and OCP (octacalcium phosphate) crystalline structures were observed in the Ti-mSBF-CHX specimen. FT-IR spectra showed the strong peaks of CHX in Ti-mSBF-adCHX and Ti-mSBF-CHX groups. However, after immersing in a phosphate buffered saline (PBS), CHX was rapidly released in Ti-mSBF-adCHX group, while it was slowly released in Ti-mSBF-CHX. We expect that the coating method of Ti-mSBF-CHX group could be used for protecting inflammation of titanium implant by incorporating antibacterial agent CHX into HAp layer.

Effect of Lead Content on Atomic Structures of Pb-bearing Sodium Silicate Glasses: A View from 29Si NMR Spectroscopy (납 함량에 따른 비정질 Pb-Na 규산염의 원자 구조에 대한 고상 핵자기 공명 분광분석 연구)

  • Lee, Seoyoung;Lee, Sung Keun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.3
    • /
    • pp.157-167
    • /
    • 2021
  • Lead (Pb) is one of the key trace elements, exhibiting a peculiar partitioning behavior into silicate melts in contact with minerals. Partitioning behaviors of Pb between silicate mineral and melt have been known to depend on melt composition and thus, the atomic structures of corresponding silicate liquids. Despite the importance, detailed structural studies of Pb-bearing silicate melts are still lacking due to experimental difficulties. Here, we explored the effect of lead content on the atomic structures, particularly the evolution of silicate networks in Pb-bearing sodium metasilicate ([(PbO)x(Na2O)1-x]·SiO2) glasses as a model system for trace metal bearing natural silicate melts, using 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy. As the PbO content increases, the 29Si peak widths increase, and the maximum peak positions shift from -76.2, -77.8, -80.3, -81.5, -84.6, to -87.7 ppm with increasing PbO contents of 0, 0.25, 0.5, 0.67, 0.86, and 1, respectively. The 29Si MAS NMR spectra for the glasses were simulated with Gaussian functions for Qn species (SiO4 tetrahedra with n BOs) for providing quantitative resolution. The simulation results reveal the evolution of each Qn species with varying PbO content. Na-endmember Na2SiO3 glass consists of predominant Q2 species together with equal proportions of Q1 and Q3. As Pb replaces Na, the fraction of Q2 species tends to decrease, while those for Q1 and Q3 species increase indicating an increase in disproportionation among Qn species. Simulation results on the 29Si NMR spectrum showed increases in structural disorder and chemical disorder as evidenced by an increase in disproportionation factor with an increase in average cation field strengths of the network modifying cations. Changes in the topological and configurational disorder of the model silicate melt by Pb imply an intrinsic origin of macroscopic properties such as element partitioning behavior.

Effects of Temperature and Saturation on the Crystal Morphology of Aragonite (CaCO3) and the Distribution Coefficient of Strontium: Study on the Properties of Strontium Incorporation into Aragonite with respect to the Crystal Growth Rate (온도와 포화도가 아라고나이트(CaCO3)의 결정형상과 스트론튬(Sr)의 분배계수에 미치는 영향: 결정성장속도에 따른 아라고나이트 내 스트론튬 병합 특성 고찰)

  • Lee, Seon Yong;Chang, Bongsu;Kang, Sue A;Seo, Jieun;Lee, Young Jae
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.2
    • /
    • pp.133-146
    • /
    • 2021
  • Aragonite is one of common polymorphs of calcium carbonate (CaCO3) and formed via biological or physical processes through precipitation in many different environments including marine ecosystems. It is noted that aragonite formation and growth as well as the substitution of trace elements such as strontium (Sr) in the aragonite structure would be dependant on several key parameters such as concentrations of chemical species and temperature. In this study, properties of the incorporation of Sr into aragonite were investigated over a wide range of various saturation conditions and temperatures similar to the marine ecosystem. All pure aragonite samples were inorganically synthesized through a constant-addition method with varying concentrations of the reactive species ([Ca]=[CO3] 0.01-1 M), injection rates of the reaction solution (0.085-17 mL/min), and solution temperatures (5-40 ℃). Pure aragonite was also formed even under the Sr incorporation conditions (0.02-0.5 M, 15-40 ℃). When temperature and saturation index (SI) with respect to aragonite increased, the crystallinity and the crystal size of aragonite increased indicating the growth of aragonite crystal. However, it was difficult to interpret the crystal growth rate because the crystal growth rate calculated using BET-specific surface area was significantly influenced by the crystal morphology. The distribution coefficient of Sr (KSr) into aragonite decreased from 2.37 to 1.57 with increasing concentrations of species (Ca2+ and CO32-) at a range of 0.02-0.5 M. Similarly, it was also found that KSr decreased 1.90 to 1.54 at a range of 15-40 ℃. All KSr values are greater than 1, and the inverse correlation between the KSr and the crystal growth rate indicate that Sr incorporation into aragonite is in a compatible relationship.

Performance assessment of an urban stormwater infiltration trench considering facility maintenance (침투도랑 유지관리를 통한 도시 강우유출수 처리 성능 평가)

  • Reyes, N.J. D.G.;Geronimo, F.K.F.;Choi, H.S.;Kim, L.H.
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.424-431
    • /
    • 2018
  • Stormwater runoff containing considerable amounts of pollutants such as particulates, organics, nutrients, and heavy metals contaminate natural bodies of water. At present, best management practices (BMP) intended to reduce the volume and treat pollutants from stormwater runoff were devised to serve as cost-effective measures of stormwater management. However, improper design and lack of proper maintenance can lead to degradation of the facility, making it unable to perform its intended function. This study evaluated an infiltration trench (IT) that went through a series of maintenance operations. 41 monitored rainfall events from 2009 to 2016 were used to evaluate the pollutant removal capabilities of the IT. Assessment of the water quality and hydrological data revealed that the inflow volume was the most relative factor affecting the unit pollutant loads (UPL) entering the facility. Seasonal variations also affected the pollutant removal capabilities of the IT. During the summer season, the increased rainfall depths and runoff volumes diminished the pollutant removal efficiency (RE) of the facility due to increased volumes that washed off larger pollutant loads and caused the IT to overflow. Moreover, the system also exhibited reduced pollutant RE for the winter season due to frozen media layers and chemical-related mechanisms impacted by the low winter temperature. Maintenance operations also posed considerable effects of the performance of the IT. During the first two years of operation, the IT exhibited a decrease in pollutant RE due to aging and lack of proper maintenance. However, some events also showed reduced pollutant RE succeeding the maintenance as a result of disturbed sediments that were not removed from the geotextile. Ultimately, the presented effects of maintenance operations in relation to the pollutant RE of the system may lead to the optimization of maintenance schedules and procedures for BMP of same structure.

A Study of Properties and Coating Natural Mineral Pumice Powder of in Korea (한국산 천연 광물 부석 파우더 코팅 및 특성에 관한 연구)

  • Kim, In-Young;Noh, Ji-Min;Nam, Eun-Hee;Shin, Moon-Sam
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.2
    • /
    • pp.498-506
    • /
    • 2019
  • This study is based on a coating method that provides utilization value as a micronised powder for cosmetic raw materials using natural minerals buried in Bonghwa, Gyeongsangbuk-do in Korea. The mineral powder name is called Buseok, and chemical name is pumice powder. The results of a study on the efficacy of cosmetics are reported by the development of particulate powder to assess the performance of this powder. First of all, in order to coat the surface of this powder with oil, aluminum hydroxide was coated on the particulate surface and then coated with alkylsilan. In addition, it was coated with vegetable oil to prevent condensation of the powder and increase the dispersion in the oil phase. First; the particle size of pumice powder was from 10 to 50mm having porous holes on the surface of the particles. Second; The components of this powder contained $SiO_2$, $Al_2O_3$, $Fe_2O_3$, MgO, CaO, $K_2O_2$, $Na_2O$, $TiO_2$, $TiO_2$, MnO, $Cr_2O_3$, $V_2O_5$. Third: The particles of this powder have a planetary structure and are reddish-brown with porosity through SEM and TEM analysis. Fourth; the far-infrared radiation rate of this parabolic powder was $0.924{\mu}m$, and the radiative energy was $3.72{\times}102W/m^2$ and ${\mu}m$. In addition, the anion emission is 128 ION/cc, which shows that the coating remains unchanged. Based on these results, it is expected to be widely applied to basic cosmetics such as BB cream, cushion foundation, powderfect, and other color-coordinated cosmetics, sunblock cream, wash-off massage pack as an application of cosmetics. (Small and Medium Business Administration: S2601385)

Analysis of the Operation Status and Function based on the Overseas Accident Investigation Agency (국외 재난원인조사기구의 운영 현황 및 기능분석)

  • Lee, Kyung-Su;Yang, Seung-Ho;Kim, Yeon-Ju;Park, Jihye;Kim, Tai-Hoon;Kim, Hyunju
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.3
    • /
    • pp.442-453
    • /
    • 2021
  • Purpose: The objective of this study is to suggest desirable direction of Korean accident investigation organization by analyzing the operation status and way of overseas developed countries' investigation agency. Method: To accomplish the objective of this study, we were examined four main characteristics of accident investigation agencies of the U.S., Japan, and Sweden, focusing on (1); the background of the establishment, (2);organizational structure, (3);major tasks and functions, (4); accident investigation procedures. Result: First, the purpose of its establishment and task is to prevent recurrence of disasters and accidents, at the same time, administrating and researching duties such as legal system, policy, recommending improvement and conducting scientific disaster-cause analysis to contribute safety for the government. Second, it is operated as an independent organization under the president, not belonging to the ministry, in order to enable fair investigation in an impartial position. Third, it has the authority to be recognized for its expertise in the results of investigation. In other words, it is operated as a permanent organization with professional personnel, and secures authority through the accident research with indepth investigation and high-quality recommendations. Conclusion: The overseas investigation agencies rapidly manage and coordinate their operational practices in order to resolve national requirements and social conflicts with fairness, accuracy and expertise in accident investigations. In order to prevent the recurrence of similar events, Korea needs to efficiently reconstruct its investigative functions distributed by each government department. In addition, institutional improvement is needed to make general adjustments at the national level, organize and operate control tower for when the accident has happened.