DOI QR코드

DOI QR Code

Effects of Temperature and Saturation on the Crystal Morphology of Aragonite (CaCO3) and the Distribution Coefficient of Strontium: Study on the Properties of Strontium Incorporation into Aragonite with respect to the Crystal Growth Rate

온도와 포화도가 아라고나이트(CaCO3)의 결정형상과 스트론튬(Sr)의 분배계수에 미치는 영향: 결정성장속도에 따른 아라고나이트 내 스트론튬 병합 특성 고찰

  • Lee, Seon Yong (Department of Earth and Environmental Sciences, Korea University) ;
  • Chang, Bongsu (Department of Earth and Environmental Sciences, Korea University) ;
  • Kang, Sue A (Department of Earth and Environmental Sciences, Korea University) ;
  • Seo, Jieun (Department of Earth and Environmental Sciences, Korea University) ;
  • Lee, Young Jae (Department of Earth and Environmental Sciences, Korea University)
  • 이선용 (고려대학교 지구환경과학과) ;
  • 장봉수 (고려대학교 지구환경과학과) ;
  • 강수아 (고려대학교 지구환경과학과) ;
  • 서지은 (고려대학교 지구환경과학과) ;
  • 이영재 (고려대학교 지구환경과학과)
  • Received : 2021.06.21
  • Accepted : 2021.06.29
  • Published : 2021.06.30

Abstract

Aragonite is one of common polymorphs of calcium carbonate (CaCO3) and formed via biological or physical processes through precipitation in many different environments including marine ecosystems. It is noted that aragonite formation and growth as well as the substitution of trace elements such as strontium (Sr) in the aragonite structure would be dependant on several key parameters such as concentrations of chemical species and temperature. In this study, properties of the incorporation of Sr into aragonite were investigated over a wide range of various saturation conditions and temperatures similar to the marine ecosystem. All pure aragonite samples were inorganically synthesized through a constant-addition method with varying concentrations of the reactive species ([Ca]=[CO3] 0.01-1 M), injection rates of the reaction solution (0.085-17 mL/min), and solution temperatures (5-40 ℃). Pure aragonite was also formed even under the Sr incorporation conditions (0.02-0.5 M, 15-40 ℃). When temperature and saturation index (SI) with respect to aragonite increased, the crystallinity and the crystal size of aragonite increased indicating the growth of aragonite crystal. However, it was difficult to interpret the crystal growth rate because the crystal growth rate calculated using BET-specific surface area was significantly influenced by the crystal morphology. The distribution coefficient of Sr (KSr) into aragonite decreased from 2.37 to 1.57 with increasing concentrations of species (Ca2+ and CO32-) at a range of 0.02-0.5 M. Similarly, it was also found that KSr decreased 1.90 to 1.54 at a range of 15-40 ℃. All KSr values are greater than 1, and the inverse correlation between the KSr and the crystal growth rate indicate that Sr incorporation into aragonite is in a compatible relationship.

아라고나이트는 탄산칼슘(CaCO3)의 동질이상 중 하나이며, 해양 생태계를 포함한 다양한 환경에서 생물학적 및 이화학적 침전 과정을 통해 형성된다. 이러한 아라고나이트의 형성 및 성장뿐만 아니라 아라고나이트 내 스트론튬(Sr)과 같은 미량원소의 치환 특성은 화학종의 농도와 온도와 같은 핵심 인자들에 의해 많은 영향을 받는다. 본 연구에서는 해양 생태계와 유사한 용액 온도와 아라고나이트에 대한 이 용액의 다양한 포화도 조건에서 아라고나이트 내 Sr 병합 특성이 규명되었다. 반응 용액의 주입속도(0.085-17 mL/min), 반응 용액의 이온 농도([Ca]=[CO3] 0.01-1 M), 혼합 용액의 온도(5-40 ℃)의 다양한 실험 조건에서 컨스턴트-에디션(constant-addition) 방법을 통해 순수한 아라고나이트가 합성되었다. 또한, 모든 Sr 병합 실험 조건(0.02-0.5 M, 15-40 ℃)에서도 순수한 아라고나이트가 형성되었다. 합성된 아라고나이트의 결정도와 결정크기는 포화도 및 온도가 증가함에 따라 상대적으로 더 크게 증가하며 아라고나이트 결정이 더 많이 성장하였음을 지시하였다. 그러나 BET-비표면적을 이용하여 계산된 결정성장속도는 결정 형상 변화에 크게 영향을 받는 것으로 나타나 해석에 주의가 요구된다. 아라고나이트 내 Sr의 분배계수(KSr)는 반응이온의 농도가 0.02에서 0.5 M로 증가할 때 2.37에서 1.57로, 온도가 15에서 40 ℃로 증가할 때 1.90에서 1.54로 감소하였으며, 모든 조건에서 KSr 값이 1보다 높게 관찰되었다. 이러한 결과는 KSr가 결정성장속도와 역의 상관관계로서 아라고나이트 내 Sr 병합이 호정성 관계임을 나타낸다.

Keywords

Acknowledgement

이 논문은 정부의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2021R1A2C100601111 and No. 2020R1I1A1A01073846). 또한, 고려대학교에서 지원된 연구비로 수행되었음. 모든 저자들은 본 논문의 최종본 제출에 동의하였음.

References

  1. Allison, N., Finch, A.A., Newville, M. and Sutton, S.R., 2005, Strontium in coral aragonite: 3. Sr coordination and geochemistry in relation to skeletal architecture. Geochimica et Cosmochimica Acta, 69, 3801-3811. https://doi.org/10.1016/j.gca.2005.01.026
  2. Andersson, P.S., Wasserburg, G.J. and Ingri, J., 1992, The sources and transport of Sr and Nd isotopes in the Baltic Sea. Earth and Planetary Science Letters, 113, 459-472. https://doi.org/10.1016/0012-821X(92)90124-E
  3. Beck, J.W., Edwards, R.L., Ito, E., Taylor, F.W., Recy, J., Rougerie, F., Joannot, P. and Henin, C., 1992, Sea-surface temperature from coral skeletal strontium/calcium ratios. Science, 257, 644-647. https://doi.org/10.1126/science.257.5070.644
  4. Bots, P., Benning, L.G., Rodriguez-Blanco, J.D., Roncal-Herrero, T. and Shaw, S, 2012, Mechanistic insights into the crystallization of amorphous calcium carbonate (ACC). Crystal Growth & Design, 12, 3806-3814. https://doi.org/10.1021/cg300676b
  5. Bohm, F., Eisenhauer, A., Tang, J., Dietzel, M., Krabbenhoft, A., Kisakurek, B. and Horn, C., 2012, Strontium isotope fractionation of planktic foraminifera and inorganic calcite. Geochimica et Cosmochimica Acta, 93, 300-314. https://doi.org/10.1016/j.gca.2012.04.038
  6. Cohen, A.L. and McConnaughey, T.A., 2003, Geochemical perspectives on coral mineralization. Reviews in Mineralogy and Geochemistry, 54, 151-187. https://doi.org/10.2113/0540151
  7. de Villiers, S., Shen, G.T. and Nelson, B. K., 1994, The SrCa-temperature relationship in coralline aragonite: Influence of variability in (SrCa) seawater and skeletal growth parameters. Geochimica et Cosmochimica Acta, 58, 197-208. https://doi.org/10.1016/0016-7037(94)90457-X
  8. Fernandez-Jalvo, Y., Pesquero, M. D. and Tormo, L., 2016, Now a bone, then calcite. Palaeogeography, Palaeoclimatology, Palaeoecology, 444, 60-70. https://doi.org/10.1016/j.palaeo.2015.12.002
  9. Finch, A.A. and Allison, N., 2007, Coordination of Sr and Mg in calcite and aragonite. Mineralogical Magazine, 71, 539-552. https://doi.org/10.1180/minmag.2007.071.5.539
  10. Gagnon, A.C., Adkins, J.F., Erez, J., Eiler, J.M. and Guan, Y., 2013, Sr/Ca sensitivity to aragonite saturation state in cultured subsamples from a single colony of coral: Mechanism of biomineralization during ocean acidification. Geochimica et Cosmochimica Acta, 105, 240-254. https://doi.org/10.1016/j.gca.2012.11.038
  11. Gussone, N., Eisenhauer, A., Heuser, A., Dietzel, M., Bock, B., Bohm, F., Spero, H.J., Lea, D.W., Bijma, J. and Nagler, T.F., 2003, Model for kinetic effects on calcium isotope fractionation (δ44Ca) in inorganic aragonite and cultured planktonic foraminifera. Geochimica et Cosmochimica Acta, 67, 1375-1382. https://doi.org/10.1016/S0016-7037(02)01296-6
  12. Gussone, N., Bohm, F., Eisenhauer, A., Dietzel, M., Heuser, A., Teichert, B., Reitner, J., Worheide, G. and Dullo, W.C., 2005, Calcium isotope fractionation in calcite and aragonite. Geochimica et Cosmochimica Acta, 69, 4485-4494. https://doi.org/10.1016/j.gca.2005.06.003
  13. Holland, H.D., Holland, H.J. and Munoz, J.L., 1964, The coprecipitation of cations with CaCO3-II. the coprecipitation of Sr+2 with calcite between 90 and 100 C, Geochimica et Cosmochimica Acta, 28, 1287-1301. https://doi.org/10.1016/0016-7037(64)90130-9
  14. Kim, S. and O'neil, J.R., 2005, Comment on "an experimental study of oxygen isotope fractionation between inorganically precipitated aragonite and water at low temperatures" by G.-T. Zhou and Y.-F. Zheng. Geochimica et Cosmochimica Acta, 69, 3195-3197. https://doi.org/10.1016/j.gca.2004.05.052
  15. Kind, M. and Mersmann, A., 1990, On supersaturation during mass crystallization from solution. Chemical Engineering & Technology, 13, 50-62. https://doi.org/10.1002/ceat.270130108
  16. Kinsman, D.J. and Holland, H.D., 1969, The co-precipitation of cations with CaCO3-IV. The co-precipitation of Sr2+ with aragonite between 16° and 96℃. Geochimica et Cosmochimica Acta, 33, 1-17. https://doi.org/10.1016/0016-7037(69)90089-1
  17. Korzh, V.D., 1994, Composition of elements in ocean and seawater: Macrokinetics of formation. Oceanology C/C of Okeanologiia, 34, 198-198.
  18. Kubota, N., Yokota, M. and Mullin, J.W., 1997, Supersaturation dependence of crystal growth in solutions in the presence of impurity. Journal of Crystal Growth, 182, 86-94. https://doi.org/10.1016/S0022-0248(97)00328-X
  19. Kubota, N., Yokota, M. and Mullin, J. W., 2000, The combined influence of supersaturation and impurity concentration on crystal growth. Journal of Crystal Growth, 212, 480-488. https://doi.org/10.1016/S0022-0248(00)00339-0
  20. Lamble, G.M., Reeder, R.J. and Northrup, P.A., 1997, Characterization of heavy metal incorporation in calcite by XAFS spectroscopy. Le Journal de Physique IV, 7, C2-793.
  21. Lee, S.Y., Lee, C.H., Hur, H., Seo, J. and Lee, Y.J., 2015, Characterization of Synthesized Strontianite: Effects of Ionic Strength, Temperature, and Aging Time on Crystal Morphology and Size. Journal of the Mineralogical Society of Korea, 28, 195-207. https://doi.org/10.9727/jmsk.2015.28.2.195
  22. Lee, S.Y., Jo, U., Chang, B. and Lee, Y.J., 2020, Effects of Preferential Incorporation of Carboxylic Acids on the Crystal Growth and Physicochemical Properties of Aragonite. Crystals, 10, 960. https://doi.org/10.3390/cryst10110960
  23. Lee, Y.J., Reeder, R.J., Wenskus, R.W. and Elzinga, E.J., 2002, Structural relaxation in the MnCO3-CaCO3 solid solution: a Mn K-edge EXAFS study. Physics and Chemistry of Minerals, 29, 585-594. https://doi.org/10.1007/s00269-002-0274-2
  24. Lee, Y.J. and Reeder, R.J., 2006, The role of citrate and phthalate during Co(II) coprecipitation with calcite. Geochimica et Cosmochimica Acta, 70, 2253-2263. https://doi.org/10.1016/j.gca.2006.01.025
  25. Li, G., Li, Z., and Ma, H., 2013, Synthesis of aragonite by carbonization from dolomite without any additives. International Journal of Mineral Processing. 123, 25-31. https://doi.org/10.1016/j.minpro.2013.03.006
  26. Lorens, R.B., 1981, Sr, Cd, Mn and Co distribution coefficients in calcite as a function of calcite precipitation rate. Geochimica et Cosmochimica Acta, 45, 553-561. https://doi.org/10.1016/0016-7037(81)90188-5
  27. Loste, E., Wilson, R.M., Seshadri, R. and Meldrum, F.C., 2003, The role of magnesium in stabilising amorphous calcium carbonate and controlling calcite morphologies. Journal of Crystal Growth, 254, 206-218. https://doi.org/10.1016/S0022-0248(03)01153-9
  28. Martin, G.B., Thorrold, S.R. and Jones, C.M., 2004, Temperature and salinity effects on strontium incorporation in otoliths of larval spot (Leiostomus xanthurus). Canadian Journal of Fisheries and Aquatic Sciences, 61, 34-42. https://doi.org/10.1139/f03-143
  29. Matsumoto, M., Fukunaga, T. and Onoe, K., 2010, Polymorph control of calcium carbonate by reactive crystallization using microbubble technique. Chemical Engineering Research and Design, 88, 1624-1630. https://doi.org/10.1016/j.cherd.2010.02.007
  30. Morse, J.W. and Bender, M.L., 1990, Partition coefficients in calcite: Examination of factors influencing the validity of experimental results and their application to natural systems. Chemical Geology, 82, 265-277. https://doi.org/10.1016/0009-2541(90)90085-L
  31. Paquette, J. and Reeder, R.J., 1995, Relationship between surface structure, growth mechanism, and trace element incorporation in calcite. Geochimica et Cosmochimica Acta, 59, 735-749. https://doi.org/10.1016/0016-7037(95)00004-J
  32. Plummer, L.N. and Busenberg, E., 1987, Thermodynamics of aragonite-strontianite solid solutions: Results from stoichiometric solubility at 25 and 76 C. Geochimica et Cosmochimica Acta, 51, 1393-1411. https://doi.org/10.1016/0016-7037(87)90324-3
  33. Reeder, R.J., 1996, Interaction of divalent cobalt, zinc, cadmium, and barium with the calcite surface during layer growth. Geochimica et Cosmochimica Acta, 60, 1543-1552. https://doi.org/10.1016/0016-7037(96)00034-8
  34. Reeder, R.J., Lamble, G.M. and Northrup, P.A., 1999, XAFS study of the coordination and local relaxation around Co2+, Zn2+, Pb2+, and Ba2+, trace elements in calcite. American Mineralogist, 84, 1049-1060. https://doi.org/10.2138/am-1999-7-807
  35. Reeder, R.J., Nugent, M., Tait, C.D., Morris, D.E., Heald, S.M., Beck, K.M., Hess, W.P. and Lanzirotti, A., 2001, Coprecipitation of uranium (VI) with calcite: XAFS, micro-XAS, and luminescence characterization. Geochimica et Cosmochimica Acta, 65, 3491-3503. https://doi.org/10.1016/S0016-7037(01)00647-0
  36. Reeder, R.J., Elzinga, E.J., Tait, C.D., Rector, K.D., Donohoe, R.J. and Morris, D.E., 2004, Site-specific incorporation of uranyl carbonate species at the calcite surface. Geochimica et Cosmochimica Acta, 68, 4799-4808. https://doi.org/10.1016/j.gca.2004.05.031
  37. Reeder, R.J., Tang, Y., Schmidt, M.P., Kubista, L.M., Cowan, D.F. and Phillips, B.L., 2013, Characterization of structure in biogenic amorphous calcium carbonate: pair distribution function and nuclear magnetic resonance studies of lobster gastrolith. Crystal Growth & Design, 13, 1905-1914. https://doi.org/10.1021/cg301653s
  38. Rimstidt, J.D., Balog, A. and Webb, J., 1998, Distribution of trace elements between carbonate minerals and aqueous solutions. Geochimica et Cosmochimica Acta, 62, 1851-1863. https://doi.org/10.1016/S0016-7037(98)00125-2
  39. Ruiz-Hernandez, S.E., Grau-Crespo, R., Ruiz-Salvador, A.R. and De Leeuw, N.H., 2010, Thermochemistry of strontium incorporation in aragonite from atomistic simulations. Geochimica et Cosmochimica Acta, 74, 1320-1328. https://doi.org/10.1016/j.gca.2009.10.049
  40. Shannon, R.D., 1976, Revised Effective Ionic Radii and Systematic Study of Inter Atomic Distances in Halides and Chalcogenides. Acta Crystallographica, 32, 751-767. https://doi.org/10.1107/S0567739476001551
  41. Smith, S.V., Buddemeier, R.W., Redalje, R.C. and Houck, J.E., 1979, Strontium-calcium thermometry in coral skeletons. Science, 204, 404-407. https://doi.org/10.1126/science.204.4391.404
  42. Tang, J., Kohler, S.J. and Dietzel, M., 2008, Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: I. Sr incorporation. Geochimica et Cosmochimica Acta, 72, 3718-3732. https://doi.org/10.1016/j.gca.2008.05.031
  43. Tang, J., Niedermayr, A., Kohler, S. J., Bohm, F., Kisakurek, B., Eisenhauer, A. and Dietzel, M., 2012, Sr2+/Ca2+ and 44Ca/40Ca fractionation during inorganic calcite formation: III. Impact of salinity/ionic strength. Geochimica et cosmochimica acta, 77, 432. https://doi.org/10.1016/j.gca.2011.10.039
  44. Tesoriero, A.J. and Pankow, J.F., 1996, Solid solution partitioning of Sr2+, Ba2+, and Cd2+ to calcite. Geochimica et Cosmochimica Acta, 60, 1053-1063. https://doi.org/10.1016/0016-7037(95)00449-1
  45. Thenepalli, T., Jun, A.Y., Han, C., Ramakrishna, C. and Ahn, J.W., 2015, A strategy of precipitated calcium carbonate (CaCO3) fillers for enhancing the mechanical properties of polypropylene polymers. Korean Journal of Chemical Engineering, 32, 1009-1022. https://doi.org/10.1007/s11814-015-0057-3
  46. Wada, S. and Suzuki, H., 2003, Calcite and fluorite as catalyst for the Knovenagel condensation of malononitrile and methyl cyanoacetate under solvent-free conditions. Tetrahedron Letters, 44, 399-401. https://doi.org/10.1016/S0040-4039(02)02431-0
  47. Wanamaker Jr.A.D. and Gillikin, D.P., 2019, Strontium, magnesium, and barium incorporation in aragonitic shells of juvenile Arctica islandica: Insights from temperature controlled experiments. Chemical Geology, 526, 117-129. https://doi.org/10.1016/j.chemgeo.2018.02.012
  48. Zhou, G.T., Yao, Q.Z., Fu, S.Q. and Guan, Y.B., 2010, Controlled crystallization of unstable vaterite with distinct morphologies and their polymorphic transition to stable calcite. European Journal of Mineralogy, 22, 259-269. https://doi.org/10.1127/0935-1221/2009/0022-2008