DOI QR코드

DOI QR Code

Effect of Lead Content on Atomic Structures of Pb-bearing Sodium Silicate Glasses: A View from 29Si NMR Spectroscopy

납 함량에 따른 비정질 Pb-Na 규산염의 원자 구조에 대한 고상 핵자기 공명 분광분석 연구

  • Lee, Seoyoung (School of Earth and Environmental Sciences, Seoul National University) ;
  • Lee, Sung Keun (School of Earth and Environmental Sciences, Seoul National University)
  • 이서영 (서울대학교 지구환경과학부) ;
  • 이성근 (서울대학교 지구환경과학부)
  • Received : 2021.08.04
  • Accepted : 2021.09.16
  • Published : 2021.09.30

Abstract

Lead (Pb) is one of the key trace elements, exhibiting a peculiar partitioning behavior into silicate melts in contact with minerals. Partitioning behaviors of Pb between silicate mineral and melt have been known to depend on melt composition and thus, the atomic structures of corresponding silicate liquids. Despite the importance, detailed structural studies of Pb-bearing silicate melts are still lacking due to experimental difficulties. Here, we explored the effect of lead content on the atomic structures, particularly the evolution of silicate networks in Pb-bearing sodium metasilicate ([(PbO)x(Na2O)1-x]·SiO2) glasses as a model system for trace metal bearing natural silicate melts, using 29Si solid-state nuclear magnetic resonance (NMR) spectroscopy. As the PbO content increases, the 29Si peak widths increase, and the maximum peak positions shift from -76.2, -77.8, -80.3, -81.5, -84.6, to -87.7 ppm with increasing PbO contents of 0, 0.25, 0.5, 0.67, 0.86, and 1, respectively. The 29Si MAS NMR spectra for the glasses were simulated with Gaussian functions for Qn species (SiO4 tetrahedra with n BOs) for providing quantitative resolution. The simulation results reveal the evolution of each Qn species with varying PbO content. Na-endmember Na2SiO3 glass consists of predominant Q2 species together with equal proportions of Q1 and Q3. As Pb replaces Na, the fraction of Q2 species tends to decrease, while those for Q1 and Q3 species increase indicating an increase in disproportionation among Qn species. Simulation results on the 29Si NMR spectrum showed increases in structural disorder and chemical disorder as evidenced by an increase in disproportionation factor with an increase in average cation field strengths of the network modifying cations. Changes in the topological and configurational disorder of the model silicate melt by Pb imply an intrinsic origin of macroscopic properties such as element partitioning behavior.

납(lead; Pb)은 지구 형성 초기의 원시 맨틀(primitive mantle)에서부터 현재 지구로의 진화 과정 이해에 중요한 정보를 제공하는 미량 원소 중 하나이다. 납은 지구 내부 및 지각에서 다양한 화성 과정에 수반하는 규산염 광물과 용융체 내에 차별적으로 분배된다. 원소 분배 계수 변화는 규산염 용융체 구조와 밀접한 관련이 있을 것으로 알려져 있다. 따라서 본 연구의 목적은 납이 포함된 규산염 용융체의 자세한 구조를 밝히고, 조성에 따라 변화하는 구조와 특성, 특히 규산염 광물과 용융체 간의 원소 분배 계수와의 관계를 제시하는 것이다. 본 연구에서는 고상 NMR 분광분석을 수행하여 비정질 Pb-Na 규산염의 자세한 원자 구조를 확인하였다. 자연계 마그마 용융체의 모델 시스템으로 납이 포함된 비정질 유리 시료[(PbO)x(Na2O)1-x]·SiO2를 소듐과 납의 단종 Na2SiO3에서 PbSiO3까지 다양한 조성의 비정질을 합성하였으며(x=0, 0.25, 0.33, 0.50, 0.67, 0.86, 1) 납의 함량에 따른 규소 주변 원자 환경의 변화를 확인할 수 있는 29Si MAS NMR 분광분석을 수행하였다. 29Si MAS NMR 결과 납 함량에 따라 피크의 폭이 넓어지고 피크 최대값의 위치는 -76.2, -77.8, -80.3, -81.5, -84.6, -87.7 ppm으로 이동하였다. 규소와 결합된 연결 산소의 양인 Qn 환경 변화를 정량적으로 분리하기 위하여 29Si NMR 스펙트럼에 대한 시뮬레이션을 수행하였다. 시뮬레이션은 조성에 따라 NBO/T로 나타낸 중합도가 일정하면서 Qn 환경의 화학적 차폐 이동을 가정한 경우 가우시안 함수의 조합으로 진행하였다. 그 결과 규소 주변 원자 환경 변화에 기인한 화학적 차폐의 이동이 시사된다. Na2SiO3의 경우 Q2가 지배적으로 존재하며 Q1 및 Q3가 비슷한 비율로 존재하였으나 소듐 대신 납이 포함되면서 Q2가 감소하고 Q1 및 Q3가 증가하면서 Qn 환경의 불균화가 증가하였다. 29Si NMR 스펙트럼에 대한 시뮬레이션 결과는 납을 포함한 비정질 규산염에서 조성에 따른 배열 무질서도 및 위상 무질서도 증가를 지시한다. 본 결과로부터 평균 양이온 세기(average cation field strengths)에 따른 불균화 상수(disproportionation factor)의 변화를 정량화하였다. 무질서도의 증가와 비정질의 구조 변화가 납을 포함한 미량 원소의 분배 계수를 감소시킬 것으로 예상된다.

Keywords

Acknowledgement

본 연구는 이성근 교수에게 지원된 한국연구재단과제(NRF-2020R1A3B2079815)로 수행되었습니다. 사독해주신 익명의 심사위원 두 분과 유봉철 편집장님께 깊은 감사를 드립니다.

References

  1. Angeli, F., Jollivet, P., Charpentier, T., Fournier, M. and Gin, S., 2016, Structure and chemical durability of lead crystal glass. Environmental Science & Technology, 50, 11549-11558. https://doi.org/10.1021/acs.est.6b02971
  2. Ben Kacem, I., Gautron, L., Coillot, D. and Neuville, D.R., 2017, Structure and properties of lead silicate glasses and melts. Chemical Geology, 461, 104-114. https://doi.org/10.1016/j.chemgeo.2017.03.030
  3. Bessada, C., Massiot, D., Coutures, J., Douy, A., Coutures, J.P. and Taulelle, F., 1994, 29Si MAS-NMR in lead silicates. Journal of Non-Crystalline Solids, 168, 76-85. https://doi.org/10.1016/0022-3093(94)90122-8
  4. Connelly, J.N. and Bizzarro, M., 2016, Lead isotope evidence for a young formation age of the Earth-Moon system. Earth and Planetary Science Letters, 452, 36-43. https://doi.org/10.1016/j.epsl.2016.07.010
  5. El-Damrawi, G., Abd-El-Nour, K. and Ramadan, R.M., 2019, Structural and dielectric studies on Na2O-PbO-SiO2 glasses. Silicon, 11, 495-500. https://doi.org/10.1007/s12633-018-9863-7
  6. Elliott, S.R., 1990, Physics of amorphous materials, Second edition ed. Longman Scientific & Technicall, Newyork.
  7. Fayon, F., Bessada, C., Massiot, D., Farnan, I. and Coutures, J.P., 1998, 29Si and 207Pb NMR study of local order in lead silicate glasses. Journal of Non-Crystalline Solids, 232-234, 403-408. https://doi.org/10.1016/S0022-3093(98)00470-0
  8. Fayon, F., Farnan, I., Bessada, C., Coutures, J., Massiot, D. and Coutures, J.P., 1997, Empirical correlations between 207Pb NMR chemical shifts and structure in solids. Journal of the American Chemical Society, 119, 6837-6843. https://doi.org/10.1021/ja963593f
  9. Feller, S., Lodden, G., Riley, A., Edwards, T., Croskrey, J., Schue, A., Liss, D., Stentz, D., Blair, S., Kelley, M., Smith, G., Singleton, S., Affatigato, M., Holland, D., Smith, M.E., Kamitsos, E.I., Varsamis, C.P.E. and Ioannou, E., 2010, A multi-spectroscopic structural study of lead silicate glasses over an extended range of compositions. Journal of Non-Crystalline Solids, 356, 304-313. https://doi.org/10.1016/j.jnoncrysol.2009.12.003
  10. Kellogg, J.B., Jacobsen, S.B. and O'Connell, R.J., 2007, Modeling lead isotopic heterogeneity in mid-ocean ridge basalts. Earth and Planetary Science Letters, 262, 328-342. https://doi.org/10.1016/j.epsl.2007.06.018
  11. Kim, H.-I. and Lee, S.K., 2018, Effect of spinning speed on 29Si and 27Al solid-state MAS NMR spectra for iron-bearing silicate glasses. Korean Journal of Mineralogy and Petrology, 31, 295-306.
  12. Kim, H.-I. and Lee, S.K., 2019, The degree of polymerization and structural disorder in (Mg,Fe)SiO3 glasses and melts: Insights from high-resolution 29Si and 17O solid-state NMR. Geochimica et Cosmochimica Acta, 250, 268-291. https://doi.org/10.1016/j.gca.2019.02.018
  13. Kim, H.-I., Lee, S., Kim, E.J. and Lee, S.K., 2020, Structure and disorder in Pb-Na metasilicate (PbO:Na2O:2SiO2) glasses: A view from high-resolution 17O solid-state NMR. Journal of the American Ceramic Society
  14. Kim, H.N. and Lee, S.K., 2013, Effect of particle size on phase transitions in metastable alumina nanoparticles: A view from high-resolution solid-state Al-27 NMR study. American Mineralogist, 98, 1198-1210. https://doi.org/10.2138/am.2013.4364
  15. Kirkpatrick, R.J., Dunn, T., Schramm, S., Smith, K.A., Oestrike, R., Turner, G., 1986, Magic-angle sample-spinning nuclear magnetic resonance spectroscopy of silicate glasses: A review, Structure and Bonding in Noncrystalline Solids. Springer, Boston, pp. 303-327.
  16. Kiseeva, E.S. and Wood, B.J., 2013, A simple model for chalcophile element partitioning between sulphide and silicate liquids with geochemical applications. Earth and Planetary Science Letters, 383, 68-81. https://doi.org/10.1016/j.epsl.2013.09.034
  17. Klein, M., Stosch, H.G., Seck, H.A. and Shimizu, N., 2000, Experimental partitioning of high field strength and rare earth elements between clinopyroxene and garnet in andesitic to tonalitic systems. Geochimica et Cosmochimica Acta, 64, 99-115. https://doi.org/10.1016/S0016-7037(99)00178-7
  18. Kohn, S.C. and Schofield, P.F., 1994, The importance of melt composition in controlling trace-element behavior: An experimental study of Mn and Zn partitioning between forsterite and silicate melts. Chemical Geology, 117, 73-87. https://doi.org/10.1016/0009-2541(94)90122-8
  19. Kushiro, I. and Mysen, B.O., 2002, A possible effect of melt structure on the Mg-Fe2+ partitioning between olivine and melt. Geochimica et Cosmochimica Acta, 66, 2267-2272. https://doi.org/10.1016/S0016-7037(01)00835-3
  20. Lee, S.K., 2005, Microscopic origins of macroscopic properties of silicate melts and glasses at ambient and high pressure: Implications for melt generation and dynamics. Geochimica et Cosmochimica Acta, 69, 3695-3710. https://doi.org/10.1016/j.gca.2005.03.011
  21. Lee, S.K., Cody, G.D., Fei, Y.W. and Mysen, B.O., 2008, Oxygen-17 nuclear magnetic resonance study of the structure of mixed cation calcium-sodium silicate glasses at high pressure: Implications for molecular link to element partitioning between silicate liquids and crystals. Journal of Physical Chemistry B, 112, 11756-11761. https://doi.org/10.1021/jp804458e
  22. Lee, S.K. and Kim, E.J., 2015, Probing metal-bridging oxygen and configurational disorder in amorphous lead silicates: Insights from O-17 solid-state nuclear magnetic resonance. Journal of Physical Chemistry C, 119, 748-756. https://doi.org/10.1021/jp509780f
  23. Lee, S.K., Mosenfelder, J.L., Park, S.Y., Lee, A.C. and Asimow, P.D., 2020a, Configurational entropy of basaltic melts in Earth's mantle. Proceedings of the National Academy of Sciences, 117, 21938-21944. https://doi.org/10.1073/pnas.2014519117
  24. Lee, S.K., Mun, K.Y., Kim, Y.H., Lhee, J., Okuchi, T. and Lin, J.F., 2020b, Degree of permanent densification in oxide glasses upon extreme compression up to 24 GPa at room temperature. Journal of Physical Chemistry Letters, 11, 2917-2924. https://doi.org/10.1021/acs.jpclett.0c00709
  25. Lee, S.K. and Stebbins, J.F., 1999, The degree of aluminum avoidance in aluminosilicate glasses. American Mineralogist, 84, 937-945. https://doi.org/10.2138/am-1999-5-630
  26. MacKenzie, K.J.D. and Smith, M.E., 2002, Multinuclear solid-state NMR of inorganic materials, Pergamon Materials Series. Pergamon, Oxford, pp. 201-268.
  27. Maekawa, H., Maekawa, T., Kawamura, K. and Yokokawa, T., 1991, The structural groups of alkali silicate glasses determined from 29Si MAS-NMR. Journal of Non-Crystalline Solids, 127, 53-64. https://doi.org/10.1016/0022-3093(91)90400-Z
  28. Mallmann, G. and O'Neill, H.S.C., 2009, The crystal/melt partitioning of V during mantle melting as a function of oxygen fugacity compared with some other elements (Al, P, Ca, Sc, Ti, Cr, Fe, Ga, Y, Zr and Nb). Journal of Petrology, 50, 1765-1794. https://doi.org/10.1093/petrology/egp053
  29. Maltese, A. and Mezger, K., 2020, The Pb isotope evolution of Bulk Silicate Earth: Constraints from its accretion and early differentiation history. Geochimica et Cosmochimica Acta, 271, 179-193. https://doi.org/10.1016/j.gca.2019.12.021
  30. Murthy, V.R., Van Westrenen, W. and Fei, Y., 2003, Experimental evidence that potassium is a substantial radioactive heat source in planetary cores. Nature, 423, 163-165. https://doi.org/10.1038/nature01560
  31. Mysen, B.O., 2004, Element partitioning between minerals and melt, melt composition, and melt structure. Chemical Geology, 213, 1-16. https://doi.org/10.1016/j.chemgeo.2004.08.028
  32. Mysen, B.O. and Richet, P., 2019, Silicate glasses and melts, Second edition ed. Elsevier, Amsterdam.
  33. Noll, P.D., Newsom, H.E., Leeman, W.P. and Ryan, J.G., 1996, The role of hydrothermal fluids in the production of subduction zone magmas: Evidence from siderophile and chalcophile trace elements and boron. Geochimica et Cosmochimica Acta, 60, 587-611. https://doi.org/10.1016/0016-7037(95)00405-X
  34. Park, S.Y. and Lee, S.K., 2012, Structure and disorder in basaltic glasses and melts: Insights from high-resolution solid-state NMR study of glasses in diopside-Ca-tschermakite join and diopside-anorthite eutectic composition. Geochimica et Cosmochimica Acta, 80, 125-142. https://doi.org/10.1016/j.gca.2011.12.002
  35. Park, S.Y., Park, C., Kim, H.N., Lee, S. and Lee, S.K., 2020, Structure of type A CAI-like melts: A view from multi-nuclear NMR study of melilite (Ca2Al2SiO7-Ca2MgSi2O7) glasses. Chemical Geology, 558, 119894. https://doi.org/10.1016/j.chemgeo.2020.119894
  36. Qin, Z.W., 1992, Disequilibrium partial melting model and its implications for trace-element fractionations during mantle melting. Earth and Planetary Science Letters, 112, 75-90. https://doi.org/10.1016/0012-821X(92)90008-J
  37. Sampaio, D.V., Picinin, A., Moulton, B.J.A., Rino, J.P., Pizani, P.S. and Zanotto, E.D., 2018, Raman scattering and molecular dynamics investigation of lead metasilicate glass and supercooled liquid structures. Journal of Non-Crystalline Solids, 499, 300-308. https://doi.org/10.1016/j.jnoncrysol.2018.07.048
  38. Shrikhande, V.K., Sudarsan, V., Kothiyal, G.P. and Kulshreshtha, S.K., 2001, 29Si MAS NMR and microhardness studies of some lead silicate glasses with and without modifiers. Journal of Non-Crystalline Solids, 283, 18-26. https://doi.org/10.1016/S0022-3093(01)00486-0
  39. Shrikhande, V.K., Sudarsan, V., Kothiyal, G.P. and Kulshreshtha, S.K., 2007, Photoluminescence and structural studies on Na2O-PbO-SiO2 glasses. Journal of Non-Crystalline Solids, 353, 1341-1345. https://doi.org/10.1016/j.jnoncrysol.2006.09.054
  40. Skibsted, J., Hjorth, J. and Jakobsen, H.J., 1990, Correlation between 29Si NMR chemical shifts and mean Si-O bond lengths for calcium silicates. Chemical Physics Letters, 172, 279-283. https://doi.org/10.1016/0009-2614(90)85403-Y
  41. Stebbins, J.F., 1987, Identification of multiple structural species in silicate glasses by 29Si NMR. Nature, 330, 465-467. https://doi.org/10.1038/330465a0
  42. Stebbins, J.F., 2016, Glass structure, melt structure, and dynamics: Some concepts for petrology. American Mineralogist, 101, 753-768. https://doi.org/10.2138/am-2016-5386
  43. Stebbins, J.F., 2017, "Free" oxide ions in silicate melts: Thermodynamic considerations and probable effects of temperature. Chemical Geology, 461, 2-12. https://doi.org/10.1016/j.chemgeo.2016.06.029
  44. Takaishi, T., Takahashi, M., Jin, J., Uchino, T., Yoko, T. and Takahashi, M., 2005, Structural study on PbO-SiO2 glasses by X-ray and neutron diffraction and 29Si MAS NMR measurements. Journal of the American Ceramic Society, 88, 1591-1596. https://doi.org/10.1111/j.1551-2916.2005.00297.x
  45. Wood, B.J. and Blundy, J., 2014, Trace element partitioning: The influences of ionic radius, cation charge, pressure, and temperature, Amsterdam, 421-448.
  46. Youngman, R., 2018, NMR spectroscopy in glass science: A review of the elements. Materials, 11, 476. https://doi.org/10.3390/ma11040476