• Title/Summary/Keyword: Chemical stability in alkaline solution

Search Result 17, Processing Time 0.024 seconds

Characterization for Performance of Zn-Air Recharegeable Batteries on Different Composition in Acidic Electrolyte (산성용액에서 전해액 조성에 따른 아연공기 이차전지의 성능변화)

  • DAI, GUANXIA;LU, LIXIN;SHIM, JOONGPYO;LEE, HONG-KI
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.5
    • /
    • pp.401-409
    • /
    • 2021
  • The combination of different concentrations of ZnSO4 in acidic solution as electrolyte in Zn-air batteries was investigated by Zn symmetrical cell test, half-cell and full cell tests. Using 1 M ZnSO4 + 0.05 M H2SO4 as electrolyte and MnO2 as air cathode catalyst with Zn foil anode, this combination had a satisfactory performance with balance of electrochemical activity and stability. Its electrochemical activity was matched to or even better than the PtRu catalyst in different current density. And its cycle life was improved (more than 100 cycles stable) by suppressing the growth of zinc dendrites on anode obviously. This electrolyte overcame the shortcomings of alkaline electrolyte that are easy to react with CO2 in the air, severely growth of Zn dendrites caused by uneven plating/stripping of Zn.

Influence of the Chemical Treatment of Bamboo Fiber (BF) on Physical Properties of BF and PP/BF Composites (대나무 섬유(BF) 및 PP/BF 복합체의 물성에 미치는 BF의 화학적 처리의 영향)

  • Lee, Beom Hee;Jeong, Da Sol;Kim, Cheol Woo;Park, Seong Ho;Kim, Youn Cheol
    • Applied Chemistry for Engineering
    • /
    • v.29 no.2
    • /
    • pp.168-175
    • /
    • 2018
  • In order to investigate the effect of the chemical treatment of bamboo fiber on physical properties of polypropylene (PP)/bamboo fiber (BF) composites, silane coupling agents such as ${\gamma}$-aminopropyltriethoxysilane (APS), ${\gamma}$-glycidoxypropyl-trimethoxysilane (GPS) and ${\gamma}$-mercaptopropyltrimethoxysilane (MRPS) were applied to BF and alkaline treated BF. Morphological properties of the chemically treated BF were confirmed by optical microscope and SEM measurements, and chemical structure changes were confirmed by FT-IR and EDS. TGA results showed that the thermal stability of silane treated BF increased. Based on the analysis of a universal testing machine and an Izod impact test, the flexural and impact properties of PP/silane treated BF composites showed higher values than those of PP/BF composites. The enhancement of interfacial adhesion properties of the PP/BF composite was checked from SEM images of the fracture of specimens after the tensile test.

Studies on the Heavy Metal Removal Characteristics of $FeS_(S)$ in the Presence of Organic Ligand (유기 리간드 존재하에서 $FeS_{(S)}$의 중금속 제거 특성 연구)

  • 박상원;박병주
    • Journal of Environmental Science International
    • /
    • v.8 no.3
    • /
    • pp.411-417
    • /
    • 1999
  • The interfacial chemical behavior, lattice exchange and dissolution, of $FeS_{(S)}$ as one of the important sulfide minerals was studied. Emphases were made on the surface characterization of hydrous $FeS_{(S)}$, the lattice exchange of Cu(II) and $FeS_{(S)}$, and its effect on the dissolution of $FeS_{(S)}$, and also affect some organic ligands on that of both Cu(II) and $FeS_{(S)}$. Cu(II) which has lower sulfide solubility in water than $FeS_{(S)}$ undergoes the lattice exchange reaction when Cu(II) ion contacts $FeS_{(S)}$ in the aqueous phase. For heavy metals which have higher sulfide solubilities in water than $FeS_{(S)}$, these metal ions were adsorbed on the surface of $FeS_{(S)}$. Such a reaction was interpreted by the solid solution formation theory. Phthalic acid(a weak chelate agent) and EDTA(a strong chelate agent) were used to demonstrate the effect of organic lignads on the lattice exchange reaction between Cu(II) and $FeS_{(S)}$. The $pH_{zpc}$ of $FeS_{(S)}$ is 7 and the effect of ionic strength is not showed. It can be expected that phthalic acid has little effect on the lattice exchange reaction between Cu(II) and $FeS_{(S)}$. whereas EDTA has very decreased the removal of Cu(II) and $FeS_{(S)}$. This study shows that stability of sulfide sediments was predicted by its solubility. The pH control of the alkaline-neutralization process to treat heavy metal in wastewater treatment process did not needed. Thereby, it was regarded as an optimal process which could apply to examine a long term stability of marshland closely in the treatment of heavy metal in wastewater released from a disussed mine.

  • PDF

A Review of Industrially Developed Components and Operation Conditions for Anion Exchange Membrane Water Electrolysis

  • Lim, Ahyoun;Cho, Min Kyung;Lee, So Young;Kim, Hyoung-Juhn;Yoo, Sung Jong;Sung, Yung-Eun;Jang, Jong Hyun;Park, Hyun S.
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.265-273
    • /
    • 2017
  • Solid-state alkaline water electrolysis is a promising method for producing hydrogen using renewable energy sources such as wind and solar power. Despite active investigations of component development for anion exchange membrane water electrolysis (AEMWE), understanding of the device performance remains insufficient for the commercialization of AEMWE. The study of assembled AEMWE devices is essential to validate the activity and stability of developed catalysts and electrolyte membranes, as well as the dependence of the performance on the device operating conditions. Herein, we review the development of catalysts and membranes reported by different AEMWE companies such as ACTA S.p.A. and Proton OnSite and device operating conditions that significantly affect the AEMWE performance. For example, $CuCoO_x$ and $LiCoO_2$ have been studied as oxygen evolution catalysts by Acta S.p.A and Proton OnSite, respectively. Anion exchange membranes based on polyethylene and polysulfone are also investigated for use as electrolyte membranes in AEMWE devices. In addition, operation factors, including temperature, electrolyte concentration and acidity, and solution feed methods, are reviewed in terms of their influence on the AEMWE performance. The reaction rate of water splitting generally increases with increase in operating temperature because of the facilitated kinetics and higher ion conductivity. The effect of solution feeding configuration on the AEMWE performance is explained, with a brief discussion on current AEMWE performance and device durability.

Beryllium(II) Recognition by Allosteric Effects in 1,2-Ethylenedioxybenzene Based Ditopic Receptors

  • Kim, Dong-Wan;Kim, Jung-Hwan;Hwang, Jae-Young;Choi, Myong-Yong;Kim, Jae-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.8
    • /
    • pp.2643-2647
    • /
    • 2011
  • Efficient ditopic receptor, uranyl(II) N,N'-(ethylenedioxy)benzenebis(salicylideneimine) (3) for beryllium ion has been obtained upon functionalization of 1,2-ethylenedioxybenzene (1) with a uranyl-salphen (salphen = N,N'-phenylenebis(salicylideneimine)) unit. Binding affinities of the receptor, 3 in AN-DMSO (v/v 95:5) solution have been measured for alkali and alkaline earth metal ions by conductometry comparing 1. The results showed that both monotopic 1 and ditopic receptor 3 were selective for $Be^{2+}$ ions over other cations, while especially 3 that can complex both with cations (coordinated to basic oxygen of ethylenedioxybenzene) and anions (coordinated to the Lewis acidic uranyl center) results in an increase of the stability constants by a factor of $10^{2.42}$ with respect to 1. Furthermore, the $Be^{2+}$-3 interactions are demonstrated by $^1H$ NMR experiments in highly polar solvent medium, DMSO-$d_6$. Higher selectivities were also observed for $Be^{2+}$ when the ditopic receptor, 3 was incorporated into PVC membranes and tested as ion selective electrodes at neutral pH.

Bimetallic Co/Zn-ZIF as an Efficient Photocatalyst for Degradation of Indigo Carmine

  • Nguyen, Thanh Nhan;Nguyen, Hoang Phuc;Kim, Tae-Ho;Lee, Soo Wohn
    • Korean Journal of Materials Research
    • /
    • v.28 no.1
    • /
    • pp.68-74
    • /
    • 2018
  • Cobalt-incorporated zeolitic imidazolate framework ZIF-8 was synthesized by a simple one-pot synthesis method at room temperature. Powder X-ray diffraction patterns and energy dispersive X-ray spectrum confirmed the formation of the bimetallic Co/Zn-ZIF structure. UV-Vis diffuse reflectance spectra revealed that the bimetallic ZIF had a lower HOMO-LUMO gap compared with ZIF-8 due to the charge transfer process from organic ligands to cobalt centers. A hydrolytic stability test showed that Co/Zn-ZIF is very robust in aqueous solution - the most important criterion for any material to be applied in photodegradation. The photocatalytic efficiency of the synthesized samples was investigated over the Indigo Carmine (IC) dye degradation under solar simulated irradiation. Cobalt incorporated ZIF-8 exhibited high efficiency over a wide range of pH and initial concentration. The degradation followed through three distinct stages: a slow initial stage, followed by an accelerated stage and completed with a decelerated stage. Moreover, the photocatalytic performance of the synthesized samples was highly improved in alkaline environment rather than in acidic or neutral environments, which may have been because in high pH medium, the increased concentration of hydroxyl ion facilitated the formation of hydroxyl radicals, a reactive species responsible for the breaking of the Indigo Carmine structure. Thus, Co/Zn-ZIF is a promising and green material for solving the environmental pollution caused by textile industries.

Lactulose Production Using Immobilized Cells Including Thermostable Cellobiose 2-epimerase (열내성 Cellobiose 2-epimerase를 발현하는 대장균의 고정화담체를 이용한 락툴로오스의 생산방법)

  • Park, Ah-Reum;Koo, Bong-Seong;Kim, Jin-Sook;Kim, Eun-Jeong;Lee, Hyeon-Cheol
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.504-511
    • /
    • 2016
  • Lactulose, a synthetic disaccharide, has received increasing interest because of its role as a prebiotic that can increase the proliferation of Bifidobacterium and Lactobacillus spp. and enhance the absorption of calcium and magnesium. While the industrial production of lactulose is still mainly achieved by the chemical isomerization of lactose in alkaline media, this process has drawbacks including the need to remove catalysts and by-products, as well as high energy requirements. Recently, the use of cellobiose 2-epimerase (CE) has been considered an interesting alternative for industrial lactulose production. In this study, to develop a process for enzymatic lactulose production using CE, we screened improved mutant enzymes ($CS-H^RC^E$) from a library generated by an error-prone PCR technique. The thermostability of one mutant was enhanced, conferring stability up to $75^{\circ}C$, and its lactulose conversion yield was increased by 1.3-fold compared with that of wild-type CE. Using a recombinant Escherichia coli strain harboring a CS35 $H^RC^E$-expressing plasmid, we prepared cell beads immobilized on a Ca-alginate substrate and optimized their reaction conditions. In a batch reaction with 200 g/l lactose solution and the immobilized cell beads, lactose was converted into lactulose with a conversion yield of 43% in 2 h. In a repeated 38-plex batch reaction, the immobilized cell beads were relatively stable, and 80% of the original enzyme activity was retained after 4 cycles. In conclusion, we developed a reasonable method for lactulose production by immobilizing cells expressing thermostable CE. Further development is required to apply this approach at an industrial scale.