Browse > Article
http://dx.doi.org/10.14478/ace.2017.1118

Influence of the Chemical Treatment of Bamboo Fiber (BF) on Physical Properties of BF and PP/BF Composites  

Lee, Beom Hee (Major in Polymer Science and Engineering, Kongju National University)
Jeong, Da Sol (Major in Polymer Science and Engineering, Kongju National University)
Kim, Cheol Woo (Seoyounewha)
Park, Seong Ho (Seoyounewha)
Kim, Youn Cheol (Major in Polymer Science and Engineering, Kongju National University)
Publication Information
Applied Chemistry for Engineering / v.29, no.2, 2018 , pp. 168-175 More about this Journal
Abstract
In order to investigate the effect of the chemical treatment of bamboo fiber on physical properties of polypropylene (PP)/bamboo fiber (BF) composites, silane coupling agents such as ${\gamma}$-aminopropyltriethoxysilane (APS), ${\gamma}$-glycidoxypropyl-trimethoxysilane (GPS) and ${\gamma}$-mercaptopropyltrimethoxysilane (MRPS) were applied to BF and alkaline treated BF. Morphological properties of the chemically treated BF were confirmed by optical microscope and SEM measurements, and chemical structure changes were confirmed by FT-IR and EDS. TGA results showed that the thermal stability of silane treated BF increased. Based on the analysis of a universal testing machine and an Izod impact test, the flexural and impact properties of PP/silane treated BF composites showed higher values than those of PP/BF composites. The enhancement of interfacial adhesion properties of the PP/BF composite was checked from SEM images of the fracture of specimens after the tensile test.
Keywords
polypropylene; bamboo fiber; silane coupling agent; NaOH aqueous solution;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 K. S. Kim, K. M. Bae, S. Y. Oh, M. K. Seo, C. G. Kang, and S. J. Park, Trend of carbon fiber-reinforced composites for lightweight vehicles, Elastom. Compos., 47, 65-74 (2012).   DOI
2 S. S. Ka, K. H. Moon, and C. J. Jang, Development trend of automotive natural fiber reinforced plastic composite and development of light weight material with LFP, Annual Spring Conference of Korean Soc. Automot. Eng. (KSAE), 4, 1349-1355 (2009).
3 S. B. Kwak, S. L. Lee, H. Y. Lee, S. H. Yun, S. H. Kim, and J. Y. Lee, Development of door trim which applied integration process using eco uni-material, Annual Fall Conference and Exhibition of Korean Soc. Automot. Eng. (KSAE), 11, 2491-2497 (2011).
4 P. Zakikhani, R. Zahari, M. T. H. Sultan, and D. L. Majid, Extraction and preparation of bamboo fibre-reinforced composites, Mater. Des., 63, 820-828 (2014).   DOI
5 J. A. Mendez, F. Vilaseca, M. A. Pelach, J. P. Lopez, L. Barbera, X. Turon, J. Girones, and P. Mutje, Evaluation of the reinforcing effect of ground wood pulp in the preparation of polypropylene-based composites coupled with maleic anhydride grafted polypropylene, J. Appl. Polym. Sci., 105, 3588-3596 (2007).   DOI
6 L. Y. Mwaikambo and M. P. Ansell, Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization, J. Appl. Polym. Sci., 84, 2222-2234 (2002).   DOI
7 M. Das and D. Chakraborty, Effects of alkalization and fiber loading on the mechanical properties and morphology of bamboo fiber composites. II. Resol matrix, J. Appl. Polym. Sci., 112, 447-453 (2009).   DOI
8 H. Demir, U. Atikler, D. Balkose, and F. Tihminlioglu, The effect of fiber surface treatments on the tensile and water sorption properties of polypropylene-luffa fiber composites, Composites A, 37, 447-456 (2006).   DOI
9 J. W. Lee, S. G. Ku, B. H. Lee, C. W. Kim, K. S. Kim, and Y. C. Kim, Effect of the compatibilizer on physical properties of polypropylene (PP)/bamboo fiber (BF) composites, Appl. Chem. Eng., 26, 615-620 (2015).   DOI
10 H. P. S. Abdul Khaili, I. U. H. Bhat, M. Jawaid, A. Zaidon, D. Hermawan, and Y. S. Hadi, Bamboo fibre reinforced biocomposites: A review, Mater. Des., 42, 353-368 (2012).   DOI
11 D. G. Liu, J. W. Song, D. P. Anderson, P. R. Chang, and Y. Hua, Bamboo fiber and its reinforced composites: structure and properties, Cellulose, 19, 1449-1480 (2012).   DOI
12 P. G. Kim, J. H. Jang, J. M. Park, and B. S. Hwang, Interfacial evaluation of surface treated jute fiber/polypropylene composites before and after hydration using micromechanical test, J. Adhes. Interface, 8, 9-15 (2007).
13 B. H. Lee, J. W. Lee, K. W. Lee, C. W. Kim, K. S. Kim, and Y. C. Kim, Effect of ethylene-octene copolymer and alkali treatment of bamboo fiber (BF) on the physical properties of PP/BF composites, Polymer(Korea), 40, 607-613 (2016).
14 L. Kirkeskov, T. Witterseh, L. W. Funch, E. Kristiansen, L. Molhave, M. K. Hansen, and B. B. Knudsen, Health evaluation of volatile organic compound (VOC) emissions from exotic wood products, Indoor Air, 19, 45-57 (2009).   DOI
15 H. S. Kim, S. M. Kim, H. J. Kim, and H. G. Kim, Physico-mechanical properties, odor and VOC emission of bio-flour-filled poly(propylene) bio-composites with different volcanic pozzolan contents, Macromol. Mater. Eng., 291, 1255-1264 (2006).   DOI
16 X. Chen, Q. Guo, and Y. Mi, Bamboo fiber-reinforced polypropylene composites: A study of the mechanical properties, J. Appl. Polym. Sci., 69, 1891-1899 (1998).   DOI
17 F. Chang, J. H. Kwon, N. H. Kim, T. Endo, and S. H. Lee, Effect of hot-compressed water treatment of bamboo fiber on the properties of polypropylene/bamboo fiber composite, Bioresources, 10(1), 1366-1377 (2015).
18 J. Girones, J. A. Mendez, F. Vilaseca, P. Mutje, and S. Boufi, Effect of silane coupling agents on the properties of pine fibers/polypropylene composites, J. Appl. Polym. Sci., 103, 3706-3717 (2007).   DOI
19 S. M. B. Nachtigall, G. S. Craziela, and S. M. L. Rosa, New polymeric-coupling agent for polypropylene/wood-flour composites, Polym. Test., 26, 619-628 (2007).   DOI
20 C. A. Fuentes, L. Q. N. Tran, C. Dupont-Gillain, A. W. V. Vuure, and I. Verpoest, Effect of interfacial adhesion on mechanical behavior of bamboo fiber reinforced thermoplastic composites, European Conference on Composite Materials, June 24-28, Venice, Italy (2012).
21 H. S. Kim and H. J. Kim, Influence of the zeolite type on the mechanical thermal properties and volatile organic compound emissions of natural-flour-filled polypropylene hybrid composites, J. Appl. Polym. Sci., 110, 3247-3255 (2008).   DOI
22 A. Espert, L. A. D. L. Heras, and S. Karlsson, Emission of possible odorous low molecular weight compounds in recycled biofiber/polypropylene composites monitored by head-space SPME-GC-MS, Polym. Degrad. Stab., 90, 555-562 (2005).   DOI
23 G. Xu, L. Wang, J. Liu, and J. Wu, FTIR and XPS analysis of the changes in bamboo chemical structure decayed by white-rot and brown-rot fungi, Appl. Surf. Sci., 343, 11-18 (2015).   DOI
24 D. M. Panaitescu, C. A. Nicolae, Z. Vuluga, C. Vitelaru, C. G. Sanporean, C. Zaharia, D. Florea, and G. Vasilievici, Influnece of hemp fibers with modified surface on polypropylene composites, J. Ind. Eng. Chem., 37, 137-146 (2016).   DOI
25 J. S. Oh, S. H. Lee, and K. J. Kim, Effects of alkali treated nano-kenaf fiber in polypropylene composite upon mechanical property changes, Polymer(Korea), 39, 99-106 (2015).
26 M. M. Kabir, H, Wang, K. T. Lau, F. Cardona, and T. Aravinthan, Mechanical properties of chemically-treated hemp fibre reinforced sandwich composites, Composites B, 43, 159-169 (2012).   DOI
27 L. Moghaddam, J. Rencoret, V. R. Maliger, D. W. Rackemann, M. D. Harrison, A. Gutierrez, J. C. D. Rio, and W. O. S. Doherty, Structural characteristics of bagasse furfural residue and its lignin component. An NMR, Py-GC/MS, and FTIR study, ACS Sustain. Chem. Eng., 5, 4846-4855 (2017).   DOI
28 Kellersztein and A. Dotan, Chemical surface modification of wheat straw fibers for polypropylene reinforcement, Polym. Compos., 37(7), 2133-2141 (2016).   DOI