Browse > Article
http://dx.doi.org/10.7316/KHNES.2021.32.5.401

Characterization for Performance of Zn-Air Recharegeable Batteries on Different Composition in Acidic Electrolyte  

DAI, GUANXIA (Department of Energy and Electrical Engineering, Woosuk University)
LU, LIXIN (Department of Energy and Electrical Engineering, Woosuk University)
SHIM, JOONGPYO (Department of Chemical Engineering, Kunsan National University)
LEE, HONG-KI (Department of Energy and Electrical Engineering, Woosuk University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.32, no.5, 2021 , pp. 401-409 More about this Journal
Abstract
The combination of different concentrations of ZnSO4 in acidic solution as electrolyte in Zn-air batteries was investigated by Zn symmetrical cell test, half-cell and full cell tests. Using 1 M ZnSO4 + 0.05 M H2SO4 as electrolyte and MnO2 as air cathode catalyst with Zn foil anode, this combination had a satisfactory performance with balance of electrochemical activity and stability. Its electrochemical activity was matched to or even better than the PtRu catalyst in different current density. And its cycle life was improved (more than 100 cycles stable) by suppressing the growth of zinc dendrites on anode obviously. This electrolyte overcame the shortcomings of alkaline electrolyte that are easy to react with CO2 in the air, severely growth of Zn dendrites caused by uneven plating/stripping of Zn.
Keywords
Oxygen reduction; Oxygen evolution; Catalyst; Air electrode; Zn-air battery;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Vijayakumar, S. Ramakrishnan, C. Sathiskumar, D. J. Yoo, J. Balamurugan, H. S. Noh, D. Kwon, Y. H. Kim, and H. Lee, "MOF-derived CoP-nitrogen-doped carbon@NiFeP nanoflakes as an efficient and durable electrocatalyst with multiple catalytically active sites for OER, HER, ORR and rechargeable zinc-air batteries", Chem. Eng. J. Vol 428, 2022, pp. 131115, doi: https://doi.org/10.1016/j.cej.2021.131115.   DOI
2 K. E. Sun, T. K. Hoang, T. N. L. Doan, Y. Yu, X. Zhu, Y. Tian, and P. Chen, "Suppression of dendrite formation and corrosion on zinc anode of secondary aqueous batteries", ACS Appl. Mater. Interf, Vol. 9, 2017, pp. 9681-9687, doi: https://doi.org/10.1021/acsami.6b16560.   DOI
3 P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang, J. Cui, Y. Liu, Y. Wang, Y. Xia, and J. Zhang, "Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries", Adv. Funct. Mater, Vol. 30, No. 13, 2020, pp. 1908528, doi: https://doi.org/10.1002/adfm.201908528.   DOI
4 S. Higashi, S. W. Lee, J. S. Lee, K. Takechi, and Y. Cui, "Avoiding short circuits from zinc metal dendrites in anode by backsideplating configuration", Nat. Commun, Vol. 7, No. 11801, 2016, pp. 1-6, doi: https://doi.org/10.1038/ncomms11801.   DOI
5 J. F. Parker, C. N. Chervin, I. R. Pala, M. Machler, M. F. Burz, J. W. Long, and D. R. Rolison, "Rechargeable nickel-3D zinc batteries: an energy-dense, safer alternative to lithium-ion", Science, Vol. 356, No. 6336, 2017, pp. 415-418, doi: https://doi.org/10.1126/science.aak9991.   DOI
6 W. Dong, J. Shi, T. Wang, Y. Yin, C. Wang, ang Y. Guo. "3D Zinc@ carbon fiber composite framework anode for aqueous Zn-MnO2 batteries", RSC Adv, Vol. 8, No. 32, 2018, pp. 19157-19163, doi: https://doi.org/10.1039/C8RA03226B.   DOI
7 J. Yi, P. Liang, X. Liu, K. Wu, Y. Liu, Y. Wang, Y. Xia, and J. Zhang, "Challenges, mitigation strategies and perspectives in development of zinc-electrode materials and fabrication for rechargeable zinc-air batteries", Energy Environ. Sci, Vol. 11, 2018, pp. 3075-3095, doi: https://doi.org/10.1039/C8EE01991F.   DOI
8 N. Logeshwaran, S. Ramakrishnan, S.S. Chandrasekaran, M. Vinothkannan, A.R. Kim, S. Sengodan, D.B. Velusamy, P. Varadhan, Jr-H. He, and D.J. Yoo, "An efficient and durable trifunctional electrocatalyst for zinc-air batteries driven overall water splitting", Appl. Cat. B: Environ, Vol. 297, 2021, pp. 120405, doi: https://doi.org/10.1016/j.apcatb.2021.120405.   DOI
9 S. Ramakrishnan, J. Balamurugan, M. Vinothkannan, A. R. Kim, S. Sengodan, and D. J. Yoo, "Nitrogen-doped graphene encapsulated FeCoMoS nanoparticles as advanced trifunctional catalyst for water splitting devices and zinc-air batteries", Appl. Cat. B: Environ. Vol. 279, 2020, pp. 119381, doi: https://doi.org/10.1016/j.apcatb.2020.119381.   DOI
10 H. Li, C. Han, Y. Huang, Y. Huang, M. Zhu, Z. Pei, Q. Xue, Z. Wang, Z. Liu, and Z. Tang, "An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte" Energy Environ. Sci, Vol. 11, No. 4, 2018, pp. 941-951, doi: https://doi.org/10.1039/C7EE03232C.   DOI
11 Y. Li and H. Dai, "Recent advances in zinc-air batteries", Chem. Soc. Rev, Vol. 43, No. 15, 2014, pp. 5257-5275, doi: https://doi.org/10.1039/C4CS00015C.   DOI
12 Z. Kang, C. Wu, L. Dong, W. Liu, J. Mou, J. Zhang, Z. Chang, B. Jiang, G. Wang, and F. Kang, "3D porous copper skeleton supported zinc anode toward high capacity and long cycle life zinc ion batteries. acs sustain. chem" Eng, Vol. 7, No. 3, 2019, pp. 3364-3371, doi: https://doi.org/10.1021/acssuschemeng.8b05568.   DOI
13 B. W. Olbasa, F. W. Fenta, S.-F. Chiu, M.-C. Tsai, C.-J. Huang, B. A. Jote, T. T. Beyene, Y.-F. Liao, C.-H. Wang, and W.-N. Su, "High-rate and long-cycle stability with a dendrite-free zinc anode in an aqueous zn-ion battery using concentrated electrolytes", ACS Appl. Energy Mater, Vol. 3, No. 5, 2020, pp. 4499-4508. doi: https://doi.org/10.1021/acsaem.0c00183.   DOI
14 J. F. Parker, C. N. Chervin, E. S. Nelson, D. R. Rolison, and J. W. Long, "Wiring zinc in three dimensions re-writes battery performance- dendrite- free cycling. Energy Environ", Sci, Vol. 7, No. 3, 2014, pp. 1117-1124. doi: https://doi.org/10.1039/C3EE43754J.   DOI
15 D. J. Mackinnon, J. M. Brannen, and P. L. Fenn, "Characterization of impurity effects in zinc electro-winning from industrial acid sulphate electrolyte", J. Appl. Electrochem., Vol. 17, 1987, pp. 1129-1143. doi: https://doi.org/10.1007/BF01023596.   DOI
16 S. J. Banik and R. Akolkar. "Suppressing dendrite growth during zinc electrodeposition by PEG-200 additive", J. Electrochem. Soc, Vol. 160, No. 11, 2013, pp. D519, doi: https://doi.org/10.1149/2.040311jes.   DOI
17 L. Bo, H. R. Rim, H. K. Lee, G. Park, and J. Shim, "Characterization of NiO and Co3O4-doped La(CoNi)O3 perovskite catalysts synthesized form excess Ni for oxygen reduction and evolution reaction in alkaline solution", Trans Kor Hydrogen New Energy Soc, Vol. 32, No. 1, 2021, pp. 41-52, doi: https://doi.org/10.7316/KHNES.2021.32.1.41.   DOI
18 M. Chen, L. Wang, H. Yang, S. Zhao, H. Xu, and G. Wu. "Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: a mini review", J. Power Sources, Vol. 375, 2018, pp. 277-290, doi: https://doi.org/10.1016/j.jpowsour.2017.08.062.   DOI
19 L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo, J. Liu, W. Liang, and C. Zhi, "Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries", Adv. Energy Mater, Vol. 8, No. 25, 2018, pp. 1801090, doi: https://doi.org/10.1002/aenm.201801090.   DOI
20 Z. Huang, J. Wang, Y. Peng, C. Jung, A. Fisher, and X. Wang. "Design of efficient bifunctional oxygen reduction/evolution electrocatalyst: recent advances and perspectives", Adv. Energy Mater, Vol. 7, No. 23, 2017, pp. 700544. doi: https://doi.org/10.1002/aenm.201700544.   DOI