• Title/Summary/Keyword: Chemical residue

Search Result 589, Processing Time 0.038 seconds

A Study on the Nitride Residue and Pad Oxide Damage of Shallow Trench Isolation(STI)-Chemical Mechanical Polishing(CMP) Process (STI-CMP 공정의 질화막 잔존물 및 패드 산화막 손상에 대한 연구)

  • Lee, U-Seon;Seo, Yong-Jin;Kim, Sang-Yong;Jang, Ui-Gu
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.9
    • /
    • pp.438-443
    • /
    • 2001
  • In the shallow trench isolation(STI)-chemical mechanical polishing(CMP) process, the key issues are the optimized thickness control, within-wafer-non-uniformity, and the possible defects such as pad oxide damage and nitride residue. The defect like nitride residue and silicon (or pad oxide) damage after STI-CMP process were discussed to accomplish its optimum process condition. To understand its optimum process condition, overall STI related processes including reverse moat etch, trench etch, STI fill and STI-CMP were discussed. Consequently, we could conclude that law trench depth and high CMP thickness can cause nitride residue, and high trench depth and over-polishing can cause silicon damage.

  • PDF

Chemical Characterization and Water Holding Capacity of Fibre-rich Feedstuffs Used for Pigs in Vietnam

  • Ngoc, T.T.B.;Len, N.T.;Lindberg, J.E.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.861-868
    • /
    • 2012
  • During two years, four samples per year were collected in Vietnam from rice bran, cassava residue, brewer's grain, tofu residue, soybean meal, coconut cake, sweet potato vines and water spinach for chemical analysis and assessment of water holding capacity (WHC). The selected feedstuffs represent fibre-rich plant sources and agro-industry co-products commonly used in pig feeding in Vietnam. The content (g/kg DM) of crude protein (CP), ether extract (EE) and non-starch polysaccharides (NSP) varied between feedstuffs and ranged from 21 to 506 for CP, from 14 to 118 for EE and from 197 to 572 for NSP. Cassava residue had a high starch content of 563 g/kg DM, while sweet potato vines, water spinach, coconut cake and soybean meal had a high content of sugars (63-71 g/kg DM). The content of individual neutral sugars varied between feed ingredients, with the highest content of arabinose, galactose and glucose in tofu residue, the highest content of xylose in brewer's grain and the highest content of mannose in coconut cake. The content of uronic acid was high for cassava residue, tofu residue, sweet potato vines and water spinach (57-88 g/kg DM). The content of soluble non-cellulosic polysaccharides (S-NCP) was positively correlated ($r^2$ = 0.82) to the WHC. The content (g/kg DM) of CP, NDF, neutral sugars, total NSP, total NCP, S-NCP and total dietary fibre in tofu residue, water spinach and coconut cake varied (p<0.05) between years. In conclusion, diet formulation to pigs can be improved if the variation in chemical composition of the fibre fraction and in WHC between potential feed ingredients is taken into account.

Removal Effect of Residue Pesticide of Organic Acid Salt in Alkali Aqueous Solution (알칼리 수용액상에서 유기산염의 잔류농약 제거효과)

  • Lee, Jae-duk;Lee, Man-Ho
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.907-912
    • /
    • 1999
  • In this study, removal effect of residue pesticides on vegetable and fruit using organic acid salt in alkali solution were investigated by gas chromatography and measurement of detergency. Generally, for the removal methods of residue pesticides and oily pollution were used chemical detergent or organic solvent. Specially, in our experiment, we only used material of food additives and trisodium citrate were superior to other organic acid salt. It was investigated that removal effect of pesticides was superior to chemical detergent.

  • PDF

A Study of Chemical Mechanical Polishing on Shallow Trench Isolation to Reduce Defect (CMP 연마를 통한 STI에서 결함 감소)

  • 백명기;김상용;김창일;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.501-504
    • /
    • 1999
  • In the shallow trench isolation(STI) chemical mechanical polishing(CMP) process, the key issues are the optimized thickness control within- wafer-non-uniformity, and the possible defects such as nitride residue and pad oxide damage. These defects after STI CMP process were discussed to accomplish its optimum process condition. To understand its optimum process condition, overall STI related processes including reverse moat etch, trench etch, STI filling and STI CMP were discussed. It is represented that the nitride residue can be occurred in the condition of high post CMP thickness and low trench depth. In addition there are remaining oxide on the moat surface after reverse moat etch. It means that reverse moat etching process can be the main source of nitride residue. Pad oxide damage can be caused by over-polishing and high trench depth.

  • PDF

Identification of an Essential Tryptophan Residue Residue in Alliinase from Garlic (Allium sativum) by Chemical Modification

  • Jin, Yeong Nam;Choe, Yong Hun;Yang, Cheol Hak
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.68-76
    • /
    • 2001
  • We have employed chemical modification to identify amino acids essential for the catalytic activity of alliinase (EC 4.4.1.4) from garlic (Allium sativum). Alliinase degrades S-alkyl-L cysteine sulfoxides, causing the characteristic odor of garlic. The activity of alliinase was rapidly and completely inactivated by N-bromosuccinimide(NBS) and slightly decreased by succinic anhydride and N-acetylimidazole. These results indicate that tryptophanyl, lysyl, and tyrosyl residues play an important role in enzyme catalysis. The reaction of alliinase with NBA yielded a characteristic decrease in both the absorbance at 280 nm and the intrinsic fluorescence at 332 nm with increasing reagent concentration of NBS, consistent with the oxidation of tryptophan residues. Kinetic analysis, fluorometric titration of tryptophans and correlation to residual alliinase activity showed that modification of only one residue present on alliinase led to complete inhibition of alliinase activity. To identify this essential tryptophan residue, we employed chemical modification by NBS in the presence and absence of the protecting substrate analogue, S-ethyl-L-cysteine (SEC) and N-terminal sequence analysis of peptide fragment isolated by reverse phase-HPLC. A fragment containing residues 179-188 was isolated. We conclude that Trp182 is essential for alliinase activity.

Chemical Modification of Yeast Farnesyl Protein Transferase Expressed in E. coli

  • Kim, Hyun-Kyung;Yang, Chul-Hak
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.529-534
    • /
    • 2006
  • Chemical modification of the S. cerevisiae farnesyl protein transferase (FPT) with CMC, phenylglyoxal and DEPC resulted in enzyme inactivation, depending upon the reagent concentration. The peptide substrate GST-PEP-I, a GST-fused undecapeptide mimicking the C-terminus of $p21^{Ki-ras}$, protected the enzyme against inactivation by CMC which is specific to either aspartate or glutamate, while the other substrate farnesyl pyrophosphate (FPP) showed protection against phenylglyoxal which is the specific modifier of arginine residues, dependent on the substrate concentrations. Neither of the two substrates protected the enzyme against histidine inactivation by DEPC. It is suggested that there is at least one aspartate or glutamate residue at the peptide substrate binding site, and that at least one arginine residue is located at the binding site of FPP. There also seems to be at least one histidine residue which is critical for enzymic activity and is exposed toward the bulk solution, excluded from the substrate binding sites.

Effect of Organic Residue on the Continuous Pyrolysis of Waste Polystyrene (연속식 폐 EPS 열분해 반응에 대한 잔류물의 영향)

  • Yoon, Byung Tae;Kim, Seong Bo;Lee, Sang Bong;Choi, Myoung Jae
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.125-128
    • /
    • 2005
  • Oil formation rate, composition of crude oil and formation of side products such as ${\alpha}-methyl$ styrene, ethyl benzene, benzene, toluene, dimer and trimer on thermal degradation of polystyrene were affected by various factors. Especially, formation of organic residue formed during reaction gave an important influence on formation of oil and composition of crude oil. Also, composition of formed crude oil showed a significant difference on reaction time. These results were caused by organic residue and carbonized solid formed during continuous reaction. Increase of residue and carbonized solid gave a decrease of yield of styrene and an increase of formation of ${\alpha}-methyl$ styrene, ethyl benzene, benzene, toluene. New reaction system was proposed for continuous operation at the thermal degradation of polystyrene.

A Structure-Based Activation Model of Phenol-Receptor Protein Interactions

  • 이경희
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.1
    • /
    • pp.18-23
    • /
    • 1997
  • Data from structure/activity studies in vir gene induction system have led to evaluate the working hypothesis of interaction between phenolic inducers and phenol binding proteins. The primary specificity in the association of a phenolic inducer with its receptor in our system is hypothesized to be the hydrogen bonding interactions through the ortho methoxy substituents as well as the proton transfer between the inducer and the binding protein. In this paper the proposed working model for phenol-mediating signal transduction was evaluated in several ways. The importance of the general acid-base catalysis was first addressed by the presence of an acidic residue and a basic residue in the phenol binding protein. Series of compounds were tested for vir gene expression activity to confirm the generation of a strong nucleophile by an acidic residue and an involvement of a basic residue as a proton acceptor. An attempt was made to correlate the pKa values of the phenolic compounds with vir gene induction activities as inducers to further support the proposed proton transfer mechanism. Finally, it was also observed that the regioselectively attached methoxy group on phenol compounds is required as the proper hydrogen bond acceptor.

The Chemical Aspects on Hydrotreating Catalysis for Residue (잔사유의 수소화처리 촉매공정에 대한 화학적 고찰)

  • Jeon, Min-Seok;Lee, Youngjin;Jung, Hoi-Kyoeng;Kim, Hyung-Jong;Yoon, Seong-Ho;Kim, Taegon;Park, Joo-Il
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.455-460
    • /
    • 2019
  • Hydrotreating catalysis refers to a various hydrogenation which saturate an unsaturated hydrocarbon, together with removing heteroatoms such as sulfur, nitrogen, oxygen, and trace metals from different petroleum streams in a refinery. Most refineries include at least three hydrotreating units for upgrading naphtha, middle distillates, gas oils, intermediate process streams, and/or residue. Among them, hydrotreating catalysis for residue are the core of the process, because of its complexity. This article reviews recent progress in tackling the issues found in the upgrading residues by hydrotreating, focusing on the chemistry of hydrodemetallization (HDM) and hydrodesulfurization (HDS). We also discuss the composition and functions of hydrotreating catalysts, and we highlight areas for further improvement.

Tow-stage Extraction of Milk Fat by Supercritical Carbon Dioxide

  • Sangbin Lim;Jwa, Mi-Kyung;Kwak, Hae-Soo
    • Preventive Nutrition and Food Science
    • /
    • v.2 no.3
    • /
    • pp.202-206
    • /
    • 1997
  • To develop mil fat fractions with desirable physico-chemical properties, anhydrous milk fat (AMF) was fractionated by one- and two-stage extractions using supercritical $CO_2$(SC-$CO_2$). Tow-stage extraction of AMF was performed by first producing tow fractions, an extract and a residue at 4$0^{\circ}C$/241bar, which were subsequently used as the feed for an extraction at 6$0^{\circ}C$/241bar and 4$0^{\circ}C$/345bar, and separated into five and four fractions, respectively, based one extraction time. These fractions were quantified and analyzed for fatty acids and physico-chemical properties. SHort-chain (C4~C8) fatty acids in extract fractions from an extract were 200~150% compared with those of the original AF. Long-chain (C14~C18) fatty acids in extract fractions from a residue were 118~141%. The ratio of unsaturated fatty acids in the residue fraction was 131%. Melting point ranged from 22 to 43$^{\circ}C$, iodine value 21.8 to 36.9, and saponification value 255 to 221 in the extract and residue fractions. SC-$CO_2$ fractionation of AMF by two-stage extraction offers the possibility of developing ractions with discrete fatty acid compositions and physico-chemical properties such as melting point, iodine value and saponification value.

  • PDF