1 |
AOAC. 1990. Official methods of analysis. 15th edition. Association of Official Analytical Chemists, Arlington, Virgina, USA.
|
2 |
Bach Knudsen, K. E. 1997. Carbohydrate and lignin contents of plant materials used in animal feeding. Anim. Feed Sci. Technol. 67:319-338.
DOI
ScienceOn
|
3 |
Bach Knudsen, K. E. 2001. The nutritional significance of "dietary fibre" analysis. Anim. Feed Sci. Technol. 90:3-20.
DOI
ScienceOn
|
4 |
Bach Knudsen, K. E. and H. Jorgensen. 2001. Intestinal degradation of dietary carbohydrates-from birth to maturity. In: Digestive Physiology in Pigs (Ed. J. E. Lindberg and B. Ogle). CABI Publishing, Wallingford. pp. 109-120.
|
5 |
Bacic, A., P. J. Harris and B. A. Stone. 1988. Structure and function of plant cell walls. Biochem. Plant 14:297-372.
|
6 |
Bor, S. L., S. Barber and C. Benedito de Barber. 1991. Rice bran: Chemistry and technology. In: Rice Utilization, Volume II, 2nd Ed. (Ed. Bor, S. L). Van Nostrand Reinhold, New York, USA. pp. 313-362.
|
7 |
Carta, F. S., C. R. Soccol, L. P. Ramos and J. D. Fontana. 1999. Production of fumaric acid by fermentation of enzymatic hydrolysates derived from cassava bagasse. Bioresource Technol. 68:23-28.
DOI
ScienceOn
|
8 |
Woolfe, J. A. 1992. Sweet potato: Untapped food resource. Cambridge University Press, Cambridge.
|
9 |
McDougall, G. J., I. M. Morrison, D. Stewart and J. R. Hillman. 1996. Plant cell walls as dietary fibre: Range, structure, processing and function. J. Sci. Food Agric. 70:133-150.
DOI
|
10 |
Minitab. 2000. Statistical software version 13.31. User's Guide to Statistics. Minitab, PA, USA.
|
11 |
Santos, M., J. J. Jimenez, B. Bartolome, C. Gomez-Cordoves and M. J. del Nozal. 2003. Variability of brewers' spent grain within a brewery. Food Chem. 80:17-21.
DOI
ScienceOn
|
12 |
Choct, M. 1997. Feed non-starch polysaccharides: Chemical structures and nutritional significance. Feed Milling Intern. June Issue: 13-26.
|
13 |
Mussatto, S. I., G. Dragone and I. C. Roberto. 2006. Brewers' spent grains: Generation, characteristics and potential applications. J. Cereal Sci. 43:1-14.
DOI
ScienceOn
|
14 |
NIAH. 2001. Composition and nutritive value of animal feed in Vietnam. National Institute of Animal Husbandry, Agricultural Publishing House, Hanoi, Vietnam.
|
15 |
Pandey, A., C. R. Soccol, P. Nigam, V. T. Soccol, P. S. L. Vandenberghe and R. Mohan. 2000. Biotechnological potential of agro-industrial residues: 2. Cassava bagasse. Bioresour. Technol. 74:81-87.
DOI
ScienceOn
|
16 |
Robertson, J. A. and M. A. Eastwood. 1981. An investigation of the experimental conditions which could affect water-holding capacity of dietary fibre. J. Sci. Food Agric. 32:819-825.
DOI
|
17 |
Saunders, R. M. 1986. Rice bran: Composition and potential food uses. Food Rev. Int. 1(3):465-495.
|
18 |
Serena, A. and K. E. Bach Knudsen. 2007. Chemical and physicochemical characterisation of co-products from vegetable food and agro industries. Anim. Feed Sci. Technol. 139:109-124.
DOI
ScienceOn
|
19 |
Theander, O., P. Aman, E. Westerlund and H. Graham. 1994. Enzymatic/chemical analysis of dietary fibre. J. AOAC Int. 77:703-709.
|
20 |
Theander, O., P. Aman, E. Westerlund, R. Andersson and D. Pettersson. 1995. Total dietary fibre determined as neutral sugar residues, uronic acid residues, and Klason lignin (The Uppsala Method): Collaborative study. J. AOAC Int. 78:1030-1044.
|
21 |
Choct, M. 2006. Enzyme for the feed industry: Past, present and future. World's Poult. Sci. J. 62:5-15.
DOI
ScienceOn
|
22 |
Huige, N. J. 1994. Brewery by-products and effluents. In: Handbook of Brewing (Ed. W.A. Hardwick). Marcel Dekker, New York. pp. 501-550.
|
23 |
Trowell, H. C., D. A. T. Southgate, T. M. S. Wolever, A. R. Leeds, M. A. Gassull and D. J. A. Jenkins. 1976. Dietary fibre redefined. Lancet 967.
|
24 |
Van Soest, P. J., J. B. Robertson and B. A. Lewis. 1991. Methods for dietary fibre, neutral detergent fibre and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597.
DOI
ScienceOn
|
25 |
Divya Nair, M. P., G. Padmaja and S. N. Moorthy. 2011. Biodegradation of cassava starch factory residue using a combination of cellulases, xylanases and hemicellulases. Biomass Bioenergy 35:1211-1218.
DOI
ScienceOn
|
26 |
Dung, N. N. X, L. H. Manh and P. Udén. 2002. Tropical fibre sources for pigs-digestibility, digesta retention and estimation of fibre digestibility in vitro. Anim. Feed Sci. Technol. 102:109-124.
DOI
ScienceOn
|
27 |
Gohl, B. 1981. Tropical feeds. Feed information summaries and nutritive values. FAO, Rome.
|
28 |
Kopinski, J. S., L. V. Kinh, D. Vinh, P. H. Ninh and B. Burren. 2007. Digestible energy, starch and cyanide content of sun-dried cassava residue in Vietnam. In: Manipulating Pig Production XI (Ed. J. E. Paterson and J. A. Barker), Australasian Pig Science Association, Werribee, Australia. pp. 118.
|
29 |
Kunzek, H., R. Kabbert and D. Gloyna. 1999. Aspects of material science in food processing: Changes in plant cell walls of fruits and vegetables. Z Lebensm Unters Forsch A 208:233-250.
DOI
|
30 |
Larsson, K. and S. Bengtsson. 1983. Bestamning av lätt tillgangliga kolhydrater i vaxtmaterial (Determination of non-structural carbohydrates in plant material). Method description no 22 Uppsala, Sweden: National Laboratory of Agricultural Chemistry.
|
31 |
Lekule, F. P., H. Jørgensen, J. A. Fernandez and A. Just. 1990. Nutritive value of some tropical feedstuffs for pigs: Chemical composition, digestibility and metabolizable energy content. Anim. Feed Sci. Technol. 28:91-101.
DOI
ScienceOn
|
32 |
McConnell, A. A., M. A. Eastwood and W. D. Mitchell. 1974. Physical characteristics of vegetable foodstuffs that could influence bowel function. J. Sci. Food Agric. 25:1457-1464.
DOI
|