DOI QR코드

DOI QR Code

The Chemical Aspects on Hydrotreating Catalysis for Residue

잔사유의 수소화처리 촉매공정에 대한 화학적 고찰

  • Jeon, Min-Seok (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Lee, Youngjin (Regional Innovation Center for Industrialization of Advanced Chemical Materials, Hanbat National University) ;
  • Jung, Hoi-Kyoeng (Department of Chemical and Biological Engineering, Hanbat National University) ;
  • Kim, Hyung-Jong (Surface Technology Center, Korea Institute of Industrial Technology (KITECH)) ;
  • Yoon, Seong-Ho (Institute for Materials Chemistry and Engineering, Kyushu University) ;
  • Kim, Taegon (Battery Research Center, R&D Campus Daejeon, LG Chem.) ;
  • Park, Joo-Il (Department of Chemical and Biological Engineering, Hanbat National University)
  • 전민석 (국립한밭대학교 화학생명공학과) ;
  • 이영진 (국립한밭대학교 화학소재 상용화 지역혁신센터) ;
  • 정회경 (국립한밭대학교 화학생명공학과) ;
  • 김현종 (한국생산기술연구원 뿌리산업기술연구소 표면처리그룹) ;
  • 윤성호 (큐슈대학교 선도물질 연구소) ;
  • 김태곤 (LG화학 기술연구원 베터리 연구센터) ;
  • 박주일 (국립한밭대학교 화학생명공학과)
  • Received : 2019.04.07
  • Accepted : 2019.04.17
  • Published : 2019.08.01

Abstract

Hydrotreating catalysis refers to a various hydrogenation which saturate an unsaturated hydrocarbon, together with removing heteroatoms such as sulfur, nitrogen, oxygen, and trace metals from different petroleum streams in a refinery. Most refineries include at least three hydrotreating units for upgrading naphtha, middle distillates, gas oils, intermediate process streams, and/or residue. Among them, hydrotreating catalysis for residue are the core of the process, because of its complexity. This article reviews recent progress in tackling the issues found in the upgrading residues by hydrotreating, focusing on the chemistry of hydrodemetallization (HDM) and hydrodesulfurization (HDS). We also discuss the composition and functions of hydrotreating catalysts, and we highlight areas for further improvement.

수소화 처리 촉매공정은 정유공정에서 다양한 유분 내 황, 질소, 산소 및 미량 금속성분들의 헤테로 원자를 제거함과 동시에 불포화 탄화수소의 포화를 목적으로 진행되는 수소화공정이다. 대부분의 정유 공정은 납사, 중간유분, 가스오일을 포함하여 중질 잔사유의 업그레이드용 수소화 처리 공정을 포함하고 있다. 언급된 유종 중, 잔사유의 수소화 처리 촉매공정은 원료자체의 복잡성으로 인해 정유공정의 핵심으로 받아들여지고 있는 만큼 기타 유종에 대한 업그레이드 공정 대비 상당히 비중 있게 다루어 지고 있는 실정이다. 따라서, 본 총설은 수소화 처리에 의한 잔사유의 업그레이드 공정 중, 중요한 이슈의 최근 동향을 수첨탈금속 (Hydrodemetallization, HDM) 및 수첨탈황(Hydrodesulfurization, HDS) 공정에 대해 화학적 관점으로 고찰하고자 한다. 더불어, 수소화 처리용 촉매의 기능과 조성은 물론, 개선방향도 살펴보았다.

Keywords

HHGHHL_2019_v57n4_455_f0001.png 이미지

Fig. 1. Unit structure of asphaltene suggested by Yen and Mullin.

HHGHHL_2019_v57n4_455_f0002.png 이미지

Fig. 2. Conventional structures of metal-porphyrin compounds.

HHGHHL_2019_v57n4_455_f0003.png 이미지

Fig. 3. The model of massive S-compounds in the residues (Probabilistic speculation).

References

  1. Boursier, L., Souchon, V., Dartiguelongue, C., Ponthus, J., Courtiade, M. and Thiebaut, D., "Complete Elution of Vacuum Gas Oil Resins by Comprehensive High-temperature Two-dimensional Gas Chromatography," J. Chromatogr. A, 1280, 98-103(2013). https://doi.org/10.1016/j.chroma.2012.12.059
  2. (a) Verentchikov, A. N., Yavor, M. I., Hasin, Y. I. and Gavrik, M. A., "Multireflection Planar Time-of-flight Mass Analyzer. I: An Analyzer for a Parallel Tandem Spectrometer," Tech. Phys, 50, 73-81(2005). https://doi.org/10.1134/1.1854827
  3. (b) Verentchikov, A. N., Yavor, M. I., Hasin, Y. I. and Gavrik, M. A., "Multireflection Planar Time-of-flight Mass Analyzer. II: The High-resolution Mode," Tech. Phys, 50, 82-86 (2005). https://doi.org/10.1134/1.1854828
  4. Klitzke, C. F., Corilo, Y. E., Siek, K., Binkley, J., Patrick, J. and Eberlin, M. N., "Petroleomics by Ultrahigh-resolution Time-of-Flight Mass Spectrometry," Energ. Fuels, 26, 5787-5794(2012). https://doi.org/10.1021/ef300961c
  5. Dickie, J. P. and Yen, T. F., "Macrostructures of the Asphaltic Fractions by Various Instrumental Methods," Anal. Chem, 39, 1847-1852(1967). https://doi.org/10.1021/ac50157a057
  6. Mullins, O. C., "The Modified Yen Model," Energ. Fuels, 24, 2179-2207(2010). https://doi.org/10.1021/ef900975e
  7. Klein, G. C., Kim, S., Rodgers, R. P. and Marshall, A. G., "Mass Spectral Analysis of Asphaltenes. I. Compositional Differences Between Pressure-drop and Solvent-drop Asphaltenes Determined by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry," Energ. Fuels, 20, 1965-1972(2006). https://doi.org/10.1021/ef0600199
  8. Shi, Q., Hou, D., Chung, K. H., Xu, C., Zhao, S. and Zhang, Y., "Characterization of Heteroatom Compounds in a Crude oil and its Saturates Aromatics, Resins, and Asphaltenes (SARA) and Non-basic Nitrogen Fractions Analyzed by Negative-ion Electrospray Ionization Fourier Transform ion Cyclotron Resonance Mass Spectrometry," Energ. Fuels, 24, 2545-2553(2010). https://doi.org/10.1021/ef901564e
  9. Furimsky, E., "Catalysts for Upgrading Heavy Petroleum Feeds: Chapter 2. Properties of Heavy Feeds," Stud. Surf. Sci. Catal., 169, 5-22(2007). https://doi.org/10.1016/S0167-2991(07)80223-0
  10. Zeinali, M. and Jamalan, M., "Biocatalytic Activity of Methylmodified Microperoxidase-11 in Transformation of Nickel- and Vanadium-porphyrins," J. Mol. Catal. B: Enzym., 79, 21-26(2012). https://doi.org/10.1016/j.molcatb.2012.03.008
  11. (a) Mitchell, P. C. H. and Scott, C. E., "Interaction of Vanadium and Nickel Porphyrins with catalysts, relevance to ca Talytic Demetallization," Catal. Today, 7(4), 467-477(1990). https://doi.org/10.1016/0920-5861(90)80004-9
  12. (b) Premovic, P. I., Tonsa, I. R., Pajovic, M. T., Lopez, L., Monaco, S. L., Dordevic, D. M. and Pavlovic, M. S., "Electron Spin Resonance Study of the Kerogen/asphaltene Vanadyl Porphyrins: Air Oxidation," Fuel, 80, 635-639(2001). https://doi.org/10.1016/S0016-2361(00)00141-1
  13. Kim, T., Ryu, J., Kim, M. J., Kim, H. J., Shul, Y. G., Jeon, Y. and Park, J. I., "Characterization and Analysis of Vanadium and Nickel Species in Atmospheric Residues," Fuel, 117(A), 783-791(2014).
  14. Ellis, J., Rechsteiner, C., Moir, M. and Wilbur, S., "Determination of Volatile Nickel and Vanadium Species in Crude oil and Crude oil Fractions by Gas Chromatography Coupled to Inductively Coupled Plasma Mass Spectrometry," J. Anal. At. Spectrom., 26, 1674-1678(2011). https://doi.org/10.1039/c1ja10058k
  15. Mckenna, A. M., Williams, J. T., Putman, J. C., Aeppli, C., Reddy, C. M., Valentine, D. L., Lemkau, K. L., Kellermann, M. Y., Savory, J. J., Kaiser, N. K., Marshall, A. G. and Rodgers, R. P., "Unprecedented Ultrahigh Resolution FT-ICR Mass Spectrometry and Parts-per-billion Mass Accuracy Enable Direct Characterization of Nickel Vanadyl Porphyrins in Petroleum from Natural Seeps," Energ. Fuels, 28, 2454-2464(2014). https://doi.org/10.1021/ef5002452
  16. Zhao, X., Liu, Y., Xu, C., Yan, Y., Zhang, Y., Zhang, Q., Zhao, S., Chung, K., Gray, M. R. and Shi, Q., "Separation and Characterization of Vanadyl Porphyrins in Venezuela Orinoco Heavy Crude Oil," Energ. Fuels, 27, 2874-2882(2013). https://doi.org/10.1021/ef400161p
  17. Wei, J. and Hegedus, L. L., "Catalyst Design-Progress and Perspective," (Ed.), John Wiley & Sons: New York(1987).
  18. Kim, T., Al-Mutairi, A., Marafi, A. M. J., Park, J. I., Koyama, H., Yoon, S. H., Miyawaki, J. and Mochida, I., "Hydrotreatment of Two Atmospheric Residues from Kuwait Export and Lower Fars Crude Oils," Fuel, 117(A), 191-197(2014). https://doi.org/10.1016/j.fuel.2013.09.057
  19. Pereira de Oliveira, L., Verstraete, J. J., Trujillo Vazquez, A. and Kolb, M., "Molecular Reconstruction of Petroleum Fractions: Application to Vacuum Residues from Different Origins," Energy Fuels, 27, 3622-3641(2013). https://doi.org/10.1021/ef300768u
  20. Muller, H., Adam, F. M., Panda, S. K., Al-Jawaad, H. H. and Al-Hajji, A. A., "Evaluation of Quantitive Sulfur Speciation in Gas Oils by Fourier Transform ion Cyclotron Resonance Mass Spectrometry: Validation by Comprehensive Two-dimensional Gas Chromatography," J. Am. Soc. Mass Spectrom., 23, 806-815(2012). https://doi.org/10.1007/s13361-011-0321-7
  21. Onukwuli, O. D., Onyia, I. M., Ekumankama, E. O. and Okeke, S. I., "Solvent Demetallization of Atmospheric and Vacuum Residues," Petro. Sci. Tech., 17, 37-49(1999). https://doi.org/10.1080/10916469908949704
  22. Miller, J. T. and Fisher, R. B., "Structural Determination by XAFS Spectroscopy of Non-porphyrin Nickel and Vanadium in Maya Residuum, Hydrocracking Residuum, and Toluene-insoluble Solid," Energ. Fuels, 13, 719-727(1999). https://doi.org/10.1021/ef9802328
  23. David Pearson, C. and Green, J. B., "Comparison of Processing Characteristics of Mayan and Wilmington Heavy Residues: 1. Acid-base-neutral Fractionation and Characterization," Fuel, 68, 456-464(1989). https://doi.org/10.1016/0016-2361(89)90267-6
  24. David Pearson, C. and Green, J. B., "Comparison of Processing Characteristics of Mayan and Wilmington Heavy Residues: 2 Characterization of Vanadium and Nickel Complexes in Acidbase-neutral Fractions," Fuel, 68, 465-474(1989). https://doi.org/10.1016/0016-2361(89)90268-8
  25. Gao, Y. Y., Shen, B. X. and Liu, J. C., "Distribution of Nickel and Vanadium in Venezuela Crude Oil," Pet. Sci. Tech., 31, 509-515(2013). https://doi.org/10.1080/10916466.2011.576363
  26. Carbognani, L., Arambarri, J. C., Molero, H. and Pereira-Almao, P., "High Temperature Simulated Distillation of Bitumen Fractions with Open Tubular Capillary Depleted Silicone/siloxane Stationary Phases," Energ. Fuels, 27, 2033-2041(2013). https://doi.org/10.1021/ef400012e
  27. Laredo, G. C., Lopez, C. R., Alvarez, R. E. and Cano, J. L., "Naphthenic Acids, Total Acid Number and Sulfur Content Profile Characterization in Isthmus and Maya Crude Oil," Fuel, 83, 1689-1695(2004). https://doi.org/10.1016/j.fuel.2004.02.004
  28. Huang, B. S., Yin, W. F., Sang, D. H. and Jiang, Z. Y., "Synergy effect of Naphthenic Acid Corrosion and Sulfur Corrosion in Crude Oil Distillation Unit," Appl. Surf. Sci., 259, 664-670(2012). https://doi.org/10.1016/j.apsusc.2012.07.094
  29. Avila, B. M. F., Pereira, V. B., Gomes, A. O. and Azevedo, D. A., "Speciation of Organic Sulfur Compounds Using Comprehensive Two-dimensional Gas Chromatography Coupled to Timeof-flight Mass Spectrometry: A Powerful Tool for Petroleum Refining," Fuel, 126, 188-193(2014). https://doi.org/10.1016/j.fuel.2014.02.055
  30. Li, Z., Xia, Z., Lai, W., Zheng, J., Chen, B., Yi, X. and Fang, W., "Hydrodemetallation (HDM) of Nickel-5,10,15,20-tetraphenylporphyrion (Ni-TPP) over NiMo/${\gamma}-Al_2O_3$ Catalyst Prepared by One-pot Method with Controlled Precipitation of the Components," Fuel, 97, 504-511(2012). https://doi.org/10.1016/j.fuel.2012.02.049
  31. Maity, S. K., Blanco, E., Ancheyta, J., Alonso, F. and Fukuyama, H., "Early Stage Deactivation of Heavy Crude Oil Hydroprocessing Catalysts," Fuel, 100, 17-23(2012). https://doi.org/10.1016/j.fuel.2011.11.017
  32. Marafi, M. and Stanislaus, A., "Preparation of Heavy Oil Hydrotreating Catalyst from Spent Residue Hydroprocessing Catalysts," Catal. Today, 130, 421-428(2008). https://doi.org/10.1016/j.cattod.2007.10.098
  33. Marafi, M. and Stanislaus, A., "Spend Catalyst Waste Management: A Review: Part 1-Development in Hydroprocessing Catalyst Waste Reduction and Use," Resour. Conserv. Recy. 52, 859-873(2008). https://doi.org/10.1016/j.resconrec.2008.02.004
  34. Hauser, A., Marafi, A., Almutairi, A. and Stanislaus, A., "Comparative Study of Hydrodemetallization (HDM) Catalyst Aging by Boscan Feed and Kuwait Atmospheric Residue," Energ. Fuels, 22, 2925-2932(2008). https://doi.org/10.1021/ef800298q
  35. Al-Mutairi, A., Bahzad, D. and Halabi, M. A., "A Comparation Study on the Performance of a Catalyst System for the Desulfurization of Two Kinds of Atmospheric Residues, Kuwait Export and EOCENE Residual Oils," Catal. Today, 125, 203-210(2007). https://doi.org/10.1016/j.cattod.2007.03.022
  36. Rana, M. S., Ancheyta, J. and Rayo, P., "A Comparative Study for Heavy oil Hydroprocessing Catalysts at Micro-flow and Benchscale Reactors," Catal. Today, 109, 24-32(2005). https://doi.org/10.1016/j.cattod.2005.08.008
  37. Long, F. X., Gevert, B. S. and Abrahamsson, P., "Mechanistic Studies of Initial Decay of Hydrodemetallization Catalysts Using Model Compounds-effects of Adsorption of Metal Species on Alumina Support," J. Catal., 222, 6-16(2004). https://doi.org/10.1016/j.jcat.2003.10.025
  38. Jarullah, A. T., Mujtaba, I. M. and Wood, A. S., "Kinetic Model Development and Simultaneous Hydrodenitrogenation and Hydrodemetallization of Crude oil in Trickle Bed Reactor," Fuel, 90, 2165-2181(2011). https://doi.org/10.1016/j.fuel.2011.01.025
  39. Long, F. X. and Gevert, B. S., "Kinetic Parameter Estimation and Statistical Analysis of Vanadyl Etioporphyrin Hydrodemetallization," Comput. Chem. Eng., 27, 697-700(2003). https://doi.org/10.1016/S0098-1354(02)00256-9
  40. Long, F. X. and Gevert, B. S., "Kinetics of Vanadyl Etioporphyrin Hydrodemetallization," J. Catal., 200, 91-98(2001). https://doi.org/10.1006/jcat.2001.3183