• Title/Summary/Keyword: Chemical reduction method

Search Result 840, Processing Time 0.032 seconds

Preparation of $BaTiO_3$ powder in solid reaction and basic study on dielectrics of $CeAIO_3-BaTiO_3$system ($BaTiO_3$ 분말합성조건 및 $CeAIO_3-BaTiO_3$계 유전체의 기초적 연구)

  • Lim, Dae-Young;Kim, Jong-Ock;Lee, Chae-hyun;Park, Won-Kyu
    • The Journal of Natural Sciences
    • /
    • v.8 no.1
    • /
    • pp.61-69
    • /
    • 1995
  • It is hard to synthesize pure $BaTiO_3$ from $BaCO_3$ and $TiO_2$ in solid reaction for the activity of BaO and secondary phase. For this reason, the wet chemical techniques have been studied. Starting material which was used in these methods were expensive and the properties of powder which was synthesized in same defined. So, some process have been studying again to improve soild reaction method. This study which was one of those was to defin the forming mechanism of $Ba_2TiO_4$ and to control some condition of $Ba_2TiO_4$. The synthesis temperature of $BaTiO_3$ in solid reaction was near $1120^{\circ}C$. The quantity and forming temperature of $Ba_2TiO_4$ could be controlled by atmosphere heat treatment. $Ba_2TiO_4$ was related to expansion in Ba-rich region of $BaTiO_3$. $BaTiO_2O_5$ and $BaTiO_3O_7$ was reason to expand in Ti-rich region. The dielectrics of $CeAIO_3$ which was synthesized and sintered in reduction atmosphere and $BaTiO_3$ system were affected by $CeO_2$ which was formed for the decomposition of $CeAIO_3$ heat treatment in air.

  • PDF

Bioremediation Efficiency of Oil-Contaminated Soil using Microbial Agents (토양미생물 복원제를 이용한 유류로 오염된 토양의 복원)

  • Hong, Sun-Hwa;Lee, Sang-Min;Lee, Eun-Young
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.301-307
    • /
    • 2011
  • Oil pollution was world-wide prevalent treat to the environment, and the physic-chemical remediation technology of the TPH (total petroleum hydrocarbon) contaminated soil had the weakness that its rate was very slow and not economical. Bioremediation of the contaminated soil is a useful method if the concentrations are moderate and non-biological techniques are not economical. The aim of this research is to investigate the influence of additives on TPH degradation in a diesel contaminated soil environment. Six experimental conditions were conduced; (i) diesel contaminated soil, (ii) diesel contaminated soil treated with microbial additives, (iii) diesel contaminated soil treated with microbial additives and the mixture was titrated to the end point of pH 7 with NaOH, (iv) diesel contaminated soil treated with microbial additives and accelerating agents and (v) diesel contaminated soil treated with microbial additives and accelerating agents, and the mixture was titrated to the end point of pH 7 with NaOH. After 10 days, significant TPH degradation (67%) was observed in the DSP-1 soil sample. The removal of TPH in the soil sample where microbial additives were supplemented was 38% higher than the control soil sample during the first ten days. The microbial additives were effective in both the initial removal rate and relative removal efficiency of TPH compared with the control group. However, various environmental factors, such as pH and temperature, also affected the activities of microbes lived in the additives, so the pH calibration of the oil-contaminated soil would help the initial reduction efficiency in the early periods.

Effect of Microwave Irradiation and Chemical Conditioning for Dewatering Characteristics of Sludge (슬러지의 탈수 특성에 대한 마이크로파와 약품개량의 영향)

  • Park, Sang-Sook;Kang, Hwa-Young;Wang, Seung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.732-738
    • /
    • 2005
  • The purpose of this study is the presentation of the proper microwave treatment conditions by means of the investigation of the effect of microwave irradiation on the dewaterability and dryability of sludge. For the improving of dewatering efficiency of sludge using the microwave, the proper time of microwave irradiation is very important. The dewatering efficiency of thickening sludge conditioned by microwave irradiation for proper time was considerably improved with reducing of capillary suction time from 52.3 sec to 30.8 sec, and the sludge conditioned by microwave irradiation had contained the moisture of 81.4% after that pressure filtrationed. The result of drying characteristics of dewatered sludge using the microwave irradiation and furnace heating, for drying of sludge to moisture of below 55%, microwave irradiation time was required 3 min, whereas, furnace heating was required 40 min at $105^{\circ}C$, 20 min at $170^{\circ}C$ and 9 min at $300^{\circ}C$, respectively. We certified that the drying of dewatered sludge using the microwave irradiation was effectively reduction of moisture of sludge compare to traditional heating method.

The Effect of Flooding Time on Ammonia Emission after Application of Liquid Pig Manure in Paddy Soil (돈분뇨 시용 후 담수시기가 암모니아 휘산에 미치는 영향)

  • Lee, Yong-Bok;Lee, Youn;Shin, Pyung-Gyun;Yun, Hong-Bae
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.377-381
    • /
    • 2011
  • BACKGROUND: Ammonia emissions from field-applied livestock manure are considered a threat to the environment worldwide. In Korea, a large amount of liquid manure was applied in the rice field before rice transplanting in order to reduce chemical fertilizer use. This study was conducted to provide the optimal flooding time after liquid manure application in an attempt to minimize ammonia emission. METHODS AND RESULTS: Ammonia emission from paddy field applied with liquid pig manure following different flooding time was measured using the dynamic chamber method. The five treatments used were : application of liquid pig manure to paddy field in flooding condition (F0T); one day (F1T) and three days (F3T) after flooding; without flooding (NF), and flooding without the application of liquid pig manure (control). Among the treatment, the highest ammonia emission was observed in F0T. The cumulative ammonia emission of F1T and F3T for 12 days were very similar and were about 4.7 times less than that of the F0T treatment. CONCLUSIONS: Ammonia emission in paddy field could be significantly reduced by liquid pig manure application after flooding rather than application of liquid pig manure in flooding condition. Therefore, flooding after liquid pig manure application would provide much more nitrogen for rice growth due to the reduction of ammonia emission.

Development of Rapid Analysis Method for Pesticide Residues by GC-MS/MS (GC-MS/MS를 이용한 잔류농약 신속검사법 개발)

  • Choi, Yong-Hoon;Nam, Hye-Seon;Hong, Hye-Mi;Lee, Jin-Ha;Chae, Kab-Ryong;Lee, Jong-Ok;Kim, Hee-Yun;Yoon, Sang-Hyeon
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.292-302
    • /
    • 2005
  • Condition of Ion-Trap gas chromatography-mass spectrometry (GC-MS) for rapid screening of 206-pesticides residues in agricultural foodstuffs was optimized. As applying a wide-bore column (10 m${\times}$0.53 mm, DF 0.25 um) connected with a fused silica restrictor (0.6 m${\times}$0.1 mm), a significant retention time reduction was obtained. Additionally, the shape of peaks was sharper and higher than classical GC's and GC-MS's, which allowed lower detection limits. To easily manage many spectral data, both of Electron Ionization(EI) and Chemical Ionization(CI) techniques were adopted in screening procedure. At the following steps, MS-MS technique were used to confirm screened analytes in complicated matrices.

Effect of Band Spotty Fertilization on the Yield and Growth of Peanut(Arachis hypogaea L.) in Plastic Film Mulching Cultivation (비닐피복 땅콩 재배시 생육 및 수량에 미치는 국소시비 효과)

  • Yang, Chang-Hyu;Yoo, Chul-Hyun;Shin, Bok-woo;Cheong, Young-Keun;Kang, Seung-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.298-302
    • /
    • 2006
  • This study was carried out to establish low-input fertilization and seeding technique using the simultaneous with seeding and fertilizer application machine and band spotty applicator which were manufactured for experiment during cultivation of mulching for peanut(Arachis hypogaea L.). The labor hour for seeding by simultaneous with seeding and fertilizing machine was appeared over 90% reduction effect compared with control plot($17.3hr\;10a^{-1}$). In band spotty fertilization plots, the emergence date was delayed about 4 days and the seedling stand rate was decreased 11~18% compared with control plot(man power). The content of total nitrogen of soil after experiment was increased while the contents of organic matter, available phosphate and exchangeable potassium were decreased than before experiment. The content of nitrogen forming nitrate was increased in band spotty fertilization(BSF) plots by increasing the amount of applied fertilizer from early growth stage till the middle growth stage. Growth rate was increased in band spotty fertilization plots and the absorbed amount of phosphate and potassium for peanut were increased in 70% band spotty fertilization plot compared with control plot. Yield of peanut was increased 70% in band spotty fertilization plot due to high pod kernel ratio and ripened pod rate compared with control plot($3,150kg\;ha^{-1}$). It was found that 70% band spotty fertilization was more effective as fertilization method to reduce both environmental pollution and chemical nitrogen fertilizer in plastic film mulching cultivation of peanut.

Experimental Study on the Properties of Surface Treatment Fly Ash Using Arc Discharge (아크방전을 이용한 표면개질 플라이애시의 특성에 관한 실험적 연구)

  • Kim, Sun-A;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.357-364
    • /
    • 2018
  • Fly ash is a material used as a concrete admixture. When fly ash is used for concrete manufacturing, it is expected to improve the performance such as reduction of cement usage and increase of chemical resistance. However, fly ash have some problems such as unburned carbon content and amorphous film on the surface of fly ash particles. When concrete is manufactured using fly ash containing a large amount of unburned carbon, there is a problem that the slump is lowered due to adsorption of AE agent. In addition, the amorphous film on the surface of the particles prevents the reactive substances from leaching out of the fly ash. Therefore, a method of surface treatment of fly ash using plasma has been studied to remove such unburned carbon and amorphous films. However, plasma has the problem that $O_3$ is generated when $O_2$ is used as an active gas. $O_3$ is a harmful substance and adversely affects the health of the experimenter. In this study, the surface of fly ash was treatment by arc discharge. Experimental results show that the unburned carbon is removed when the surface of fly ash is treatment by arc discharge and the amorphous film was broken and the reactivity was improved. Therefore, it is considered that arc discharge can treatment the surface of fly ash and improve the quality of fly ash.

Exergy Analysis of Cryogenic Air Separation Unit for Oxy-fuel Combustion (순산소 연소를 위한 초저온 공기분리장치의 엑서지 분석)

  • Choi, Hyeung-chul;Moon, Hung-man;Cho, Jung-ho
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.1
    • /
    • pp.27-35
    • /
    • 2019
  • In order to solve the global warming and reduce greenhouse gas emissions, $CO_2$ capture technology was developed by applying oxy-fuel combustion. But there has been such a problem that its economic efficiency is low due to the high price of oxygen gases. ASU is known to be most suitable method to produce large quantity of oxygen, to reduce the oxygen production cost, the efficiency of ASU need to be improved. To improve the efficiency of ASU, exergy analysis can be used. The exergy analysis provides the information of used energy in the process, the location and size of exergy destruction. In this study, the exergy analysis was used for process developing and optimization of large scale ASU. The process simulation of ASU was conducted, the results were used to calculate the exergy. As a result, to reduce the exergy loss in the cold box of ASU, a lower operating pressure process was suggested. It was confirmed the importance of heat leak and heat loss reduction of cold box. Also, the unit process of ASU which requires thermal integration was confirmed.

Uptake and Distribution of Bisphenol A and Its Metabolites in Lettuce Grown in Sandy Loam and Loam Soil

  • Cho, Il Kyu;Jeon, Yong-Bae;Oh, Young Goun;Rahman, Md. Musfiqur;Kim, Won-Il;Lee, Young-Deuk
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.4
    • /
    • pp.375-383
    • /
    • 2020
  • BACKGROUND: Bisphenol A (BPA) is a chemical widely used in polycarbonate plastics, epoxy resins. BPA is an endocrine disruptor. Residue of BPA in agricultural environments is a major concern. The objective of this study was to understand the characteristics of the uptake and distribution of BPA and its metabolites introduced into the agricultural environment to crops, and to use it as basic data for further research on reduction of BPA in agricultural products. METHODS AND RESULTS: This study established the analysis method of BPA and its metabolites in soil and crops, and estimated the intake of BPA and its metabolites from lettuce (Lactuca sativa) grown in sandy loam and loam soil, which are representative soils in Korea. The two major metabolites of BPA were 4-hydroxyacetophenone (4-HAP) and 4-hydroxybenzoic acid (4-HBA). BPA, 4-HAP and 4-HBA have been analyzed by using liquid chromatography tandem mass spectrometry (LC-MS/MS). These substances were detected in sandy loam and loam soil, indicating that certain portions of BPA were converted to 4-HAP and 4-HBA in the soil; however, it was observed that only 4-HBA migrated to lettuce through the roots into crops. CONCLUSION: The uptake residues showed the BPA and 4-HAP were not detected in lettuces grown on sandy loam (SL) and loam (L) soil treatments that were applied with of 10 ng/g, 50 ng/kg and 500 ng/g of BPA. However, the 4-HBA was detected at the level of 7 ng/g and 11 ng/g in the lettuce grown in sandy loam and loam soil that were treated with the 500 ng/g of BPA, respectively, while the 8 ng/g of 4-HBA was measured in the lettuce cultivated in the loam that was treated with 100 ng/g of BPA. This result presents that the BPA persisting in the soil of the pot was absorbed through the lettuce roots and then distributed in the lettuce leaves at the converted form of 4-HBA, what is the oxidative metabolite of BPA.

Preparation and Anti-fouling Properties of PVDF Mixed Matrix Asymmetric Membranes Impregnated with 𝛽-cyclodextrin (𝛽-사이클로덱스트린을 함침시킨 PVDF 혼합기질 비대칭막의 제조와 내오염성 평가)

  • Shin, Sung Ju;Lee, Jong Sung;Lee, Jeong Gil;Youm, Kyung Ho
    • Membrane Journal
    • /
    • v.31 no.6
    • /
    • pp.434-442
    • /
    • 2021
  • Poly(vinylidene fluoride) (PVDF) membrane has a good membrane durability because of its high mechanical resistance, thermal and chemical stability. However, the strong hydrophobic property of PVDF membrane can induce a low water permeability and easy fouling by proteins and organic matters. In order to improve the anti-fouling properties of PVDF membrane, the PVDF mixed matrix asymmetric membranes impregnated with biofunctional material 𝛽-cyclodextrin (𝛽-CD) in the membrane structure were prepared by phase inversion method. The membrane filtration experiments of pure water and BSA solution were performed using the PVDF/𝛽-CD mixed matrix asymmetric membranes prepared according to the 𝛽-CD contents. The experiments showed that the introduction of 𝛽-CD into the PVDF polymer matrix contributed to increase in the hydrophilic property of the PVDF membranes, and this led to the reduction of contact angles and improvement of anti-fouling properties. The PVDF/𝛽-CD membrane which was prepared using the dope solution with a 2 wt% 𝛽-CD content represented 64 L/m2·h of pure water flux, 95% of BSA rejection and maximum 80% of flux enhancements compared to flux results of the pristine PVDF membrane.