• Title/Summary/Keyword: Chemical capacitance

Search Result 348, Processing Time 0.028 seconds

Characteristics of oxynitride films grown by PECVD using $N_2O$ gas ($N_2O$가스를 사용하여 PECVD로 성장된 Oxynitride막의 특성)

  • 최현식;이철인;장의구
    • Electrical & Electronic Materials
    • /
    • v.9 no.1
    • /
    • pp.9-17
    • /
    • 1996
  • Plasma enhanced chemical vapor deposition (PECVD) allows low temperature processing and so it is widely used, but it causes instability of devices due to serious amount of impurities within the film. In this paper, electrical and chemical characteristics of the PECVD oxynitride film formed by different N$_{2}$O to N$_{2}$O+NH$_{3}$ gas ratio is studied. It has been found that hydrogen concentration of PECVD oxynitride film was decreased from 4.25*10$^{22}$ [cm$^{-2}$ ] to 1.18*10$^{21}$ [cm$^{-2}$ ] according to the increase of N$_{2}$O gas. It was also found that PECVD oxynitride films have low trap density in the oxide and interface in comparison with PECVD nitroxide films, and has higher refractive index and capacitance than oxide films. In particular, oxynitride film formed in gas ratio of N$_{2}$O/(N$_{2}$O+NH$_{3}$)= 0.88 shows increased capacitance and decreased leakage current due to small portion of hydrogen in oxide and the accumulation of nitrogen about 4[atm.%] at the interface.

  • PDF

Preparation and Electrochemical Behaviors of Petal-like Nickel Cobaltite/Reduced Graphene Oxide Composites for Supercapacitor Electrodes

  • Kim, Jeonghyun;Park, Soo-Jin;Kim, Seok
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.324-330
    • /
    • 2019
  • Petal-like nickel cobaltite ($NiCo_2O_4$)/reduced graphene oxide (rGO) composites with different $rGO-to-NiCo_2O_4$ weight ratios were synthesized using a simple hydrothermal method and subsequent thermal treatment. In the $NiCo_2O_4/rGO$ composite, the $NiCo_2O_4$ 3-dimensional nanomaterials contributed to the improvement of electrochemical properties of the final composite material by preventing the restacking of the rGO sheet and securing ion movement passages. The composite structure was examined by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and Fourier-transform infrared (FT-IR) spectroscopy. The FE-SEM and TEM images showed that petal-like $NiCo_2O_4$ was supported on the rGO surface. Cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) were used for the electrochemical analysis of composites. Among the prepared composites, $0.075g\;rGO/NiCo_2O_4$ composite showed the highest specific capacitance of $1,755Fg^{-1}$ at a current density of $2Ag^{-1}$. The cycle performance and rate capability of the composite material were higher than those of using the single $NiCo_2O_4$ material. These nano-structured composites could be regarded as valuable electrode materials for supercapacitors that require superior performance.

Steady-State and Transient Response Analysis of DSSC Based on Electron Diffusion Coefficient and Chemical Capacitance

  • J. C. Gallegos;J. Manriquez;R. Rodriguez;S. Vargas;D. Rangel
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.276-290
    • /
    • 2024
  • A study of the transition from transitory state to steady state in DSSCs based on natural dyes is presented; cochineal was used as dye and Li+, Na+, and K+ were the ions added to the electrolyte. The photocurrent profiles were obtained as a function of time. Several DSSCs were prepared with different cations and their role and the transitory-to-steady transition was determined. A novel hybrid charge carrier source model based on the Heaviside function H(t) and the Lambert-Beer law, was developed and applied to analysis of the transient response of the output photocurrent. Additionally, the maximum effective light absorption coefficient α and the electronic extraction rate κ for each ion were determined: ${\alpha}_{Li^+,Na^+,K^+}\,=\,(0.486,\,0.00085,\,0.1126)\,cm^{-1}$, and also the electronic extraction rate ${\kappa}^{Li^+,Na^+,K^+}_{ext.}\,=\,(1410,\,19.07,\,19.69)\,cm\,s^{-1}$. The impedance model using Fick's second law was developed for carrier recombination to characterize the photocurrent.

Poly(vinyl alcohol)-based Polymer Electrolyte Membrane for Solid-state Supercapacitor (고체 슈퍼캐퍼시터를 위한 폴리비닐알콜 고분자 전해질막)

  • Lee, Jae Hun;Park, Cheol Hun;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.29 no.1
    • /
    • pp.30-36
    • /
    • 2019
  • In this study, we reported a solid-state supercapacitor consisting of titanium nitride (TiN) nanofiber and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT-PSS) conducting polymer electrode and poly(vinyl alcohol) (PVA)-based polymer electrolyte membrane. The TiN nanofiber was selected as electrode materials due to high electron conductivity and 2-dimensional structure which is beneficial for scaffold effect. PEDOT-PSS is suitable for organic/inorganic composites due to good redox reaction with hydrogen ions in electrolyte and good dispersion in solution. By synergetic effect of TiN nanofiber and PEDOT-PSS, the PEDOT-PSS/TiN electrode showed higher surface area than the flat Ti foil substrate. The PVA-based polymer electrolyte membrane could prevent leakage and explosion problem of conventional liquid electrolyte and possess high specific capacitance due to the fast ion diffusion of small $H^+$ ions. The specific capacitance of PEDOT-PSS/TiN supercapacitor reached 75 F/g, which was much higher than that of conventional carbon-based supercapacitors.

Ethanol Gas Sensing Characteristics of Conducting Polymer Sensor Using Impedance (Impedance를 이용한 전도성고분자 센서의 에탄올 가스 감응특성)

  • Lee, Kyung-Mun;Yu, Joon-Boo;Jun, Hee-Kwon;Lee, Byung-Soo;Lee, Duk-Dong;Huh, Jeung-Soo
    • Korean Journal of Materials Research
    • /
    • v.13 no.3
    • /
    • pp.155-159
    • /
    • 2003
  • The polypyrrole and polyaniline thin film sensors which were made by chemical polymerization were employed to detect ethanol gas. With a single sensor element we can obtain characteristic patterns of behaviour across a very wide frequency range when measuring either resistance or capacitance. Impedance spectroscopy was employed to study the gas sensing behavior of both capacitance and resistance based sensors with conducting polymer as the active sensing element.

Fabrication of High Break-down Voltage MIM Capacitors for IPD Applications

  • Wang, Cong;Kim, Nam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.241-241
    • /
    • 2009
  • For the Radio Frequency Integrated Passive Device (RFIPD) application, we have successfully developed and characterized high break-down voltage metal-insulator-metal (MIM) capacitors with 2,000 ${\AA}$ plasma-enhanced chemical vapor deposition (PECVD) silicon nitride which deposited with $SiH_4/NH_3$ gas mixing rate, working pressure, and RF power of PECVD at $250^{\circ}C$ chamber temperature. At the PECVD process condition of gas mixing rate (0.957), working pressure (0.9 Torr), and RF power (60 W), the AFM RMS value of about 2,000 ${\AA}$ silicon nitride on the bottom metal was the lowest of 0.862 nm and break-down electric field was the highest of about 8.0 MV/cm with the capacitance density of 326.5 $pF/mm^2$.

  • PDF

Preparation of Conduction Polymer for Solid Type Aluminum Electrolytic Capacitor (알미늄 고체 전해 커패시터용 도전성 고분자막의 제조)

  • 양성현;유광균;이기서
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.528-531
    • /
    • 1994
  • Digitalization in electronic system is required the capacitor which have a large capacitance with small size, low impedance at high frequency, and high reliability. The fabrication and its properties of aluminum solid electrolytic capacitor are investigated. Employing conduction polymer film such as, polypyrrole as solid electroylte, solid type aluminum electrolytic capacitors were made. The surface of insulationg oxide is covered with conducting polymer layer prepared by chemical oxidative polymerization. Thereafter this conducting layer is covered with conducting polymer prepared by electrochemical polymerization. The dielectric properties of these capacitors were also measured and discussed. Regarding on frequency characteristics of the trial made capacitor, impedance and ESR at high frequency is lower than those of the stacked type film capacitor. It is alo confirmed that temperature coefficient of capacitance and dissipation factor of the capacitor are lower than those of film capacitor and liquid type aluminum electrolytic capacitor.

Preparation of Heated Tobacco Biomass-derived Carbon Material for Supercapacitor Application (궐련형 담배 바이오매스 기반의 슈퍼커패시터용 탄소의 제조 및 응용)

  • Kim, Jiwon;Jekal, Suk;Kim, Dong Hyun;Yoon, Chang-Min
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.30 no.2
    • /
    • pp.5-15
    • /
    • 2022
  • In this study, heated tobacco biomass was prepared as an active material for supercapacitor device. Retrieved tobacco leaf from the heated tobacco was carbonized at various temperature(800/850/950℃). Carbonized tobacco leaf material synthesized at 850℃ exhibited the highest C/O ratio, indicating the finest carbon quality. In addition, polypyrrole was coated onto the carbonized leaf material for increasing the electrochemical performance via low-temperature polymerization method. As-synthesized carbonized leaf material at 850℃(CTL-850)-based electrode and polypyrrole-coated carbonized leaf material(CTL-850/PPy)-based electrode displayed outstanding specific capacitances of 100.2 and 155.3F g-1 at 1 A g-1 with opertaing window of -1.0V and 1.0V. Asymmetric supercapacitor device, assembled with CTL-850 as the negative electrode and CTL-850/PPy as the positive electrode, manifested specific capacitance of 31.1F g-1(@1 A g-1) with widened operating voltage window of 2.0V. Moreover, as-prepared asymmetric supercapacitor device was able to lighten up the RED Led (1.8V), suggesting the high capacitance and extension of operating voltage window. The result of this research may help to pave the new possibility toward preparing the effective energy storage device material recycling the biomass.

PET Fabric/Poly(3,4-ethylenedioxythiophene) Composite as Polymer Electrode in Redox Supercapacitor

  • Cho, Seung-Hyun;Joo, Jin-Soo;Jung, Bo-Ram;Ha, Tae-Min;Lee, Jun-Young
    • Macromolecular Research
    • /
    • v.17 no.10
    • /
    • pp.746-749
    • /
    • 2009
  • Poly(ethylene terephthalate) (PET) fabric/poly(3,4-ethylenedioxythiophene) (PEDOT) composite with stable and high electrochemical activity was fabricated by chemical and electrochemical polymerization of 3,4-ethylenedioxythiophene (EDOT) on a PET fabric in sequence. Effects of polymerization conditions on the following characteristics of the composite were studied: electrical conductivity and surface morphology. The electrochemical properties were also investigated by cyclic voltammetry and cyclic charge/discharge experiments. The specific volume resistivity, electrical conductivity and specific discharge capacitance of the composite were 0.034 $\Omega-cm$ and 25 S/cm, and 54.5 F/g, respectively.

Influence of ionic liquid additives on the conducting and interfacial properties of organic solvent-based electrolytes against an activated carbon electrode

  • Kim, Kyungmin;Jung, Yongju;Kim, Seok
    • Carbon letters
    • /
    • v.15 no.3
    • /
    • pp.187-191
    • /
    • 2014
  • This study reports on the influence of N-butyl-N-methylpyrrolidinium tetrafluoroborate ($PYR_{14}BF_4$) ionic liquid additive on the conducting and interfacial properties of organic solvent based electrolytes against a carbon electrode. We used the mixture of ethylene carbonate/dimethoxyethane (1:1) as an organic solvent electrolyte and tetraethylammonium tetrafluoroborate ($TEABF_4$) as a common salt. Using the $PYR_{14}BF$ ionic liquid as additive produced higher ionic conductivity in the electrolyte and lower interface resistance between carbon and electrolyte, resulting in improved capacitance. The chemical and electrochemical stability of the electrolyte was measured by ionic conductivity meter and linear sweep voltammetry. The electrochemical analysis between electrolyte and carbon electrode was examined by cyclic voltammetry and electrochemical impedance spectroscopy.