Browse > Article
http://dx.doi.org/10.5714/CL.2014.15.3.187

Influence of ionic liquid additives on the conducting and interfacial properties of organic solvent-based electrolytes against an activated carbon electrode  

Kim, Kyungmin (Department of Chemical and Biochemical Engineering, Pusan National University)
Jung, Yongju (Department of Applied Chemical Engineering, Korea University of Technology and Education)
Kim, Seok (Department of Chemical and Biochemical Engineering, Pusan National University)
Publication Information
Carbon letters / v.15, no.3, 2014 , pp. 187-191 More about this Journal
Abstract
This study reports on the influence of N-butyl-N-methylpyrrolidinium tetrafluoroborate ($PYR_{14}BF_4$) ionic liquid additive on the conducting and interfacial properties of organic solvent based electrolytes against a carbon electrode. We used the mixture of ethylene carbonate/dimethoxyethane (1:1) as an organic solvent electrolyte and tetraethylammonium tetrafluoroborate ($TEABF_4$) as a common salt. Using the $PYR_{14}BF$ ionic liquid as additive produced higher ionic conductivity in the electrolyte and lower interface resistance between carbon and electrolyte, resulting in improved capacitance. The chemical and electrochemical stability of the electrolyte was measured by ionic conductivity meter and linear sweep voltammetry. The electrochemical analysis between electrolyte and carbon electrode was examined by cyclic voltammetry and electrochemical impedance spectroscopy.
Keywords
organic solvent-based electrolytes; activated carbon; ionic liquid additives;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Francke R, Cericola D, Kotz R, Weingarth D, Waldvogel SR. Novel electrolytes for electrochemical double layer capacitors based on 1,1,1,3,3,3-hexafluoropropan-2-ol. Electrochim Acta, 62, 372 (2012). http://dx.doi.org/10.1016/j.electacta.2011.12.050.   DOI   ScienceOn
2 Brandt A, Isken P, Lex-Balducci A, Balducci A. Adiponitrile-based electrochemical double layer capacitor. J Power Sources, 204, 213 (2012). http://dx.doi.org/10.1016/j.jpowsour.2011.12.025.   DOI   ScienceOn
3 Isken P, Dippel C, Schmitz R, Schmitz RW, Kunze M, Passerini S, Winter M, Lex-Balducci A. High flash point electrolyte for use in lithium-ion batteries. Electrochim Acta, 56, 7530 (2011). http://dx.doi.org/10.1016/j.electacta.2011.06.095.   DOI   ScienceOn
4 Perricone E, Chamas M, Cointeaux L, Lepretre JC, Judeinstein P, Azais P, Beguin F, Alloin F. Investigation of methoxypropionitrile as co-solvent for ethylene carbonate based electrolyte in supercapacitors. A safe and wide temperature range electrolyte. Electrochim Acta, 93, 1 (2013). http://dx.doi.org/10.1016/j.electacta.2013.01.084.   DOI   ScienceOn
5 Abu-Lebdeh Y, Davidson I. High-voltage electrolytes based on adiponitrile for Li-ion batteries. J Electrochem Soc, 156, A60 (2009). http://dx.doi.org/10.1149/1.3023084.   DOI   ScienceOn
6 Oh MS, Kim S. Effect of dodecyl benzene sulfonic acid on the preparation of polyaniline/activated carbon composites by in situ emulsion polymerization. Electrochim Acta, 59, 196 (2012). http://dx.doi.org/10.1016/j.electacta.2011.10.058.   DOI   ScienceOn
7 Brandt A, Balducci A. The influence of pore structure and surface groups on the performance of high voltage electrochemical double layer capacitors containing adiponitrile-based electrolyte. J Electrochem Soc, 159, A2053 (2012). http://dx.doi.org/10.1149/2.074212jes.   DOI
8 Burke A. R&D considerations for the performance and application of electrochemical capacitors. Electrochim Acta, 53, 1083 (2007). http://dx.doi.org/10.1016/j.electacta.2007.01.011.   DOI   ScienceOn
9 Anouti M, Couadou E, Timperman L, Galiano H. Protic ionic liquid as electrolyte for high-densities electrochemical double layer capacitors with activated carbon electrode material. Electrochim Acta, 64, 110 (2012). http://dx.doi.org/10.1016/j.electacta.2011.12.120.   DOI   ScienceOn
10 Kim JH, Nam KW, Ma SB, Kim KB. Fabrication and electrochemical properties of carbon nanotube film electrodes. Carbon, 44, 1963 (2006). http://dx.doi.org/10.1016/j.carbon.2006.02.002.   DOI   ScienceOn
11 Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA. Electronic confinement and coherence in patterned epitaxial graphene. Science, 312, 1191 (2006). http://dx.doi.org/10.1126/science.1125925.   DOI   ScienceOn
12 Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS. Synthesis of graphenebased nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45, 1558 (2007). http://dx.doi.org/10.1016/j.carbon.2007.02.034.   DOI   ScienceOn
13 Kim JE, Park SJ, Kim S. Capacitance behaviors of polyaniline/graphene nanosheet composites prepared by aniline chemical polymerization. Carbon Lett, 14, 51 (2013). http://dx.doi.org/10.5714/CL2013.14.1.051.   DOI   ScienceOn
14 Ruch PW, Hahn M, Rosciano F, Holzapfel M, Kaiser H, Scheifele W, Schmitt B, Novak P, Kotz R, Wokaun A. In situ X-ray diffraction of the intercalation of $(C_2H_5)_4N^+$ and $BF_4\;^{-}$ into graphite from acetonitrile and propylene carbonate based supercapacitor electrolytes. Electrochim Acta, 53, 1074 (2007). http://dx.doi.org/10.1016/j.electacta.2007.01.069.   DOI   ScienceOn
15 Gao ZH, Zhang H, Cao GP, Han MF, Yang YS. Spherical porous VN and $NiO_x$ as electrode materials for asymmetric supercapacitor. Electrochim Acta, 87, 375 (2013). http://dx.doi.org/10.1016/j.electacta.2012.09.075.   DOI   ScienceOn
16 Oh MS, Park SJ, Jung Y, Kim S. Electrochemical properties of polyaniline composite electrodes prepared by in-situ polymerization in titanium dioxide dispersed aqueous solution. Synth Met, 162, 695 (2012). http://dx.doi.org/10.1016/j.synthmet.2012.02.021.   DOI   ScienceOn
17 Park SK, Kim S. Effect of carbon blacks filler addition on electrochemical behaviors of $Co_3O_4/graphene$ nanosheets as a supercapacitor electrodes. Electrochim Acta, 89, 516 (2013). http://dx.doi.org/10.1016/j.electacta.2012.11.075.   DOI   ScienceOn
18 Kim KS, Park SJ. Electrochemical performance of graphene/carbon electrode contained well-balanced micro- and mesopores by activation-free method. Electrochim Acta, 65, 50 (2012). http://dx.doi.org/10.1016/j.electacta.2012.01.009.   DOI   ScienceOn
19 Park SK, Park SJ, Kim S. Preparation and capacitance behaviors of cobalt oxide/graphene composites. Carbon Lett, 13, 130 (2012). http://dx.doi.org/10.5714/CL2012.13.2.130.   DOI   ScienceOn
20 Kang J, Wen J, Jayaram SH, Yu A, Wang X. Development of an equivalent circuit model for electrochemical double layer capacitors (EDLCs) with distinct electrolytes. Electrochim Acta, 115, 587 (2014). http://dx.doi.org/10.1016/j.electacta.2013.11.002.   DOI   ScienceOn
21 Oh MS, Kim S. Synthesis and analysis of polyaniline/$TiO_2$ composites prepared with various molar ratios between aniline monomer and para-toluenesulfonic acid, Electrochimica Acta, 78, 279 (2012). http://dx.doi.org/10.1016/j.electacta.2012.05.109.   DOI   ScienceOn
22 Palm R, Kurig H, Tonurist K, Janes A, Lust E. Is the mixture of 1-ethyl-3-methylimidazolium tetrafluoroborate and 1-butyl-3-methylimidazolium tetrafluoroborate applicable as electrolyte in electrical double layer capacitors? Electrochem Commun, 22, 203 (2012). http://dx.doi.org/10.1016/j.elecom.2012.06.029.   DOI   ScienceOn