• Title/Summary/Keyword: Chemical Reactor

Search Result 1,549, Processing Time 0.024 seconds

The Numerical Simulation of Ultrafine $SiO_2$ Particle Fabrication and Deposition by Using the Tube Furnace Reactor (튜브형 가열로 반응기를 이용한 초미립 $SiO_2$ 입자의 제조 및 증착에 대한 수치모사)

  • 김교선;현봉수
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.11
    • /
    • pp.1246-1254
    • /
    • 1995
  • A numerical model for fabrication and deposition of ultrafine SiO2 particles were proposed in the simplified horizontal MCVD apparatus using tube furnace reactor. The model equations such as energy and mass balance equations and the 0th, 1st and 2nd moment balance equations of aerosols were considered in the reactor. The phenomena of SiCl4 chemical reaction, SiO2 particle formation and coagulation, diffusion and thermophoresis of SiO2 particles were included in the aerosol dynamic equation. The profiles of gas temperature, SiCl4 concentration and SiO2 particle volume were calculated for standard conditions. The concentrations, sizes and deposition efficiencies of SiO2 particles were calculated, changing the process conditions such as tube furnace setting temperature, total gas flow rate and inlet SiCl4 concentration.

  • PDF

Camelina oil transesterification using mixed catalyst of tetra methyl amonium hydroxide and potassium hydroxide on the tubular reactor

  • Hyun, Young-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.178-184
    • /
    • 2011
  • The analysis of reaction kinetics provided that the reaction order was the $1^{st}$ of triglyceride and the rate constant was 0.067 $min^{-1}$. The transesterification of camelina oil using 0.6 wt% mixed catalyst which consists of 40 v/v% of potassium hydroxide (1 wt%) and 60 v/v% of tetra methyl ammonium hydroxide (0.8 wt%), was carried out at $65^{\circ}C$ on the tubular reactor packed with static mixer. The conversion was shown to be 95.5% at the 6:1 molar ratio of methanol to oil, flow rate of feed of 3.0 mL/min and 24 of element of static mixer. The volume of washing water emitted by 0.6 wt% mixed catalyst was the half of the volume emitted by 1 wt% potassium hydroxide.

Oxidation Behavior and Property Changes of Nuclear Graphite (원자로급 흑연의 산화거동 및 산화에 따른 물성변화)

  • Cho, Kwang-Youn;Kim, Kyong-Ja;Lim, Yun-Soo;Chung, Yun-Joong;Chi, Se-Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.833-838
    • /
    • 2006
  • Graphite is suitable for high temperature structural materials because of chemical stability as well as unique crystal structure. Especially, graphite can be used as a part of a nuclear reactor due to high tolerance at the extreme conditions of high temperature and neutron irradiations. Although study of oxidation properties or behaviors of graphite are very important and essential for the life and stability of the nuclear reactor, most of studies treat this theme lightly. This work focuses on the oxidation characteristics of several grade isotropic graphite of the nuclear reactor.

Lad-Scale Sequencing Batch Reactor for the optimum treatment of Ship sewage

  • Park, Sang-Ho;Kim, In-Soo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.315-320
    • /
    • 2006
  • There have been several problems in treating shipboard sewage due to special environmental conditions of ship, such as limited space, rolling and pitching, change of temperature and so on. It was suggested that Sequence Batch Reactor (SBR) might be suitable process for overcome these problems in terms of small size, high capacity of treating wastewater and full automation. In this study a SBR process was employed for biological treatment of organic wastes in the shipboard sewage. This process was able to remove nitrogen and phosphorus as well as organic matter efficiently. More than 95% of chemical oxygen demand(COD) were removed. In addition, about 97% of total nitrogen (T-N) was reduced. The total phosphorus(T-P) reduction averaged 93%. A disturbance operation caused by the treatment of Methylene Blue Active Substances(MBAS) was not observed.

  • PDF

Control of Nano-Structure of Ceramic Membrane and Its Application (세라믹 멤브레인의 나노구조 제어 및 응용)

  • Lee, Hye-Ryeon;Seo, Bong-Kuk;Choi, Yong-Jin
    • Membrane Journal
    • /
    • v.22 no.2
    • /
    • pp.77-94
    • /
    • 2012
  • Amorphous ceramic membranes have been developed for gas phase separation and liquid phase separation (water treatment, wastewater treatment and separation of organic solvent or compounds) because of their thermal stability and solvent resistance. In this paper, ceramic membranes were categorized by membrane pore size and materials, and summarized for hydrogen separation, carbon dioxide separation, membrane reactor, pervaporation and water treatment with membrane structure and properties.

Application of Biofilter Using Fibril-form Matrix for Odor Gas Removal

  • Lee, Gwang-Yeon;Jeong, Gwi-Taek;Lee, Kyoung-Min;Snuwoo, Chang-Shin;Lee, Woo-Tae;Cha, Jin-Myoung;Jang, Young-Seon;Park, Don-Hee
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.247-251
    • /
    • 2005
  • This research was performed for developing of biological treatment process of odor gas such as MEK, $H_{2}S$, and toluene, which is generated from the food waste recycling process. To establish the operational conditions of odor gas removal by small-scale biofiltration equipment, it was continuously operated by using toluene as a treating odor object. When the odor treating microorganisms were adhered to fibril form biofilter, high removal efficiency over 93% was obtained by biofilm formation. At 400 ppm of inlet odor gas concentration and 10 sec of retention time, the removal efficiency was 76% and 93% in 1st stage reactor and 2nd stage reactor, respectively. However, the removal efficiency remained over 97% at the operational conditions above 15 sec of retention time.

  • PDF

Effect of Pressure on Minimum Fluidization Velocity and Transition Velocity to Fast Fluidization of Oxygen Carrier for Chemical Looping Combustor (케미컬루핑 연소를 위한 산소전달입자의 최소유동화속도 및 고속유동층 전이유속에 미치는 압력의 영향)

  • KIM, JUNGHWAN;BAE, DAL-HEE;BAEK, JEOM-IN;PARK, YEONG-SEONG;RYU, HO-JUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.85-91
    • /
    • 2017
  • To develop a pressurized chemical looping combustor, effect of pressure on minimum fluidization velocity and transition velocity to fast fluidization was investigated in a two-interconnected pressurized fluidized bed system using oxygen carrier particle. The minimum fluidization velocity was measured by bed pressure drop measurement with variation of gas velocity. The measured minimum fluidization velocity decreased as the pressure increased. The transition velocity to fast fluidization was measured by emptying time method and decreased as the pressure increased. Gas velocity in the fuel reactor should be greater than the minimum fluidization velocity and gas velocity in the air reactor should be greater than the transition velocity to fast fluidization to ensure proper operation of two interconnected fluidized bed system.

The Phenol Wastewater Treatment by Candida tropicalis in Fluidized Bed Biofilm Reactor (유동층 반응기에서 Candida tropicalis 균에 의한 페놀함유 폐수처리에 관한 연구)

  • Kim, Woo Sik;Youm, Kyung Ho;Kim, Eung Sik
    • Microbiology and Biotechnology Letters
    • /
    • v.13 no.1
    • /
    • pp.33-39
    • /
    • 1985
  • The effects of initial concentration, flow rate, and recycle ratio on the removal efficiency of phenol were studied in a tapered fluidized bed reactor packed with activated carbon which was attached with Candida tropicalis. The optimum conditions of Candida tropicalis were showed that pH was 7.0 and temperature was $30^{\circ}C$, and the specific growth rate of Candida tropicalis was satisfied with the Monod equation up to 500 mg/L of phenol, and beyond it the inhibition of substrate was found. According to the increases of initial concentration and flow rate, the removal efficiency was decreased, as the recycle ratio was increased, the removal efficiency was increased. In the case of flow rate of 10mL/sec and the recycle ratio of 2, the removal efficiency was 90% above for the all of initial concentration. The removal rate of phenol was the first order reaction in this system, and the rate equation of reaction was as follows.

  • PDF

Flow and heat transfer in a thermal CVD for carbon nanotubes according to variation of the inlet and outlet areas (유입.유출구 크기 변화에 따른 CNT용 CVD 장비 내의 열 및 유동해석)

  • Ha, Da-Som;Jang, Young-Woon;Kim, Jong-Seok;Yoon, Suk-Bum;Im, Ik-Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.4
    • /
    • pp.119-124
    • /
    • 2011
  • Flow and temperature field in reactors are important factors for design of thermal chemical vapor deposition system to grow carbon nanotubes. In this study, effects of the variations of the inlet and outlet areas of the CVD reactor to the flow characteristics and temperature field are numerically analyzed. High temperature of the gas in the entrance region is obtained with slow gas speed resulted from the enlarged inlet area. Variation of the exit area has little effects on the flow field and temperature in the reactor. However the largest area among considered cases gives the highest gas temperature though the differences are small.

Methodology of Ni-base Superalloy Development for VHTR using Design of Experiments and Thermodynamic Calculation (실험 계획법 및 열역학 계산법을 이용한 초고온가스로용 니켈계 초합금 설계 방법론)

  • Kim, Sung-Woo;Kim, Dong-Jin
    • Corrosion Science and Technology
    • /
    • v.12 no.3
    • /
    • pp.132-141
    • /
    • 2013
  • This work is concerning a methodology of Ni-base superalloy development for a very high temperature gas-cooled reactor(VHTR) using design of experiments(DOE) and thermodynamic calculations. Total 32 sets of the Ni-base superalloys with various chemical compositions were formulated based on a fractional factorial design of DOE, and the thermodynamic stability of topologically close-packed(TCP) phases of those alloys was calculated by using the THERMO-CALC software. From the statistical evaluation of the effect of the chemical composition on the formation of TCP phase up to a temperature of 950 oC, which should be suppressed for prolonged service life when it used as the structural components of VHTR, 16 sets were selected for further calculation of the mechanical properties. Considering the yield and ultimate tensile strengths of the selected alloys estimated by using the JMATPRO software, the optimized chemical composition of the alloys for VHTR application, especially intermediate heat exchanger, was proposed for a succeeding experimental study.