DOI QR코드

DOI QR Code

Methodology of Ni-base Superalloy Development for VHTR using Design of Experiments and Thermodynamic Calculation

실험 계획법 및 열역학 계산법을 이용한 초고온가스로용 니켈계 초합금 설계 방법론

  • Kim, Sung-Woo (Nuclear Materials Division, Korea Atomic Energy Research Institute) ;
  • Kim, Dong-Jin (Nuclear Materials Division, Korea Atomic Energy Research Institute)
  • 김성우 (한국원자력연구원 원자력재료개발부) ;
  • 김동진 (한국원자력연구원 원자력재료개발부)
  • Received : 2013.01.28
  • Accepted : 2013.06.10
  • Published : 2013.06.15

Abstract

This work is concerning a methodology of Ni-base superalloy development for a very high temperature gas-cooled reactor(VHTR) using design of experiments(DOE) and thermodynamic calculations. Total 32 sets of the Ni-base superalloys with various chemical compositions were formulated based on a fractional factorial design of DOE, and the thermodynamic stability of topologically close-packed(TCP) phases of those alloys was calculated by using the THERMO-CALC software. From the statistical evaluation of the effect of the chemical composition on the formation of TCP phase up to a temperature of 950 oC, which should be suppressed for prolonged service life when it used as the structural components of VHTR, 16 sets were selected for further calculation of the mechanical properties. Considering the yield and ultimate tensile strengths of the selected alloys estimated by using the JMATPRO software, the optimized chemical composition of the alloys for VHTR application, especially intermediate heat exchanger, was proposed for a succeeding experimental study.

Keywords

References

  1. C. Cabet and F. Rouillard, J. Nucl. Mater., 392, 235 (2009). https://doi.org/10.1016/j.jnucmat.2009.03.029
  2. K. G. E. Brenner and L. W. Graham, Nucl. Technol., 66, 404 (1984). https://doi.org/10.13182/NT84-A33443
  3. W. Ren and R. Swimdeman, J. Pressure Vessel Technol., 131, 024002-1 (2009). https://doi.org/10.1115/1.2967885
  4. D.-J. Kim, G.-G. Lee, S.-W. Kim and H.-P. Kim, Corros. Sci. Tech., 9, 164 (2010).
  5. D.-J. Kim, G.-G. Lee, S.-J. Jeong, W.-G. Kim and J.-Y. Park, Nucl. Eng. Tech., 43, 429 (2011). https://doi.org/10.5516/NET.2011.43.5.429
  6. K. Mo, G. Lovicu, H.-M. Tung, X. Chen and J. F. Stubbins, J. Eng. Gas Turbines and Power, 133, 052908-1 (2011). https://doi.org/10.1115/1.4002819
  7. S. Kihara, J. B. Newkirk, A. Ohtomo and Y. Saiga, Met. Trans. A, 11A, 1019 (1980).
  8. Y. Kaji, H. Tsuji, H. Nishi, Y. Muto, H.-J. Penkalla and F. Schubert, J. Nucl. Sci. Tech., 39, 923 (2002). https://doi.org/10.1080/18811248.2002.9715277
  9. Y. Tachibana and T. Iyoku, Nucl. Eng. Des., 233, 261 (2004). https://doi.org/10.1016/j.nucengdes.2004.08.013
  10. F. Rouillard, C. Cabet, K. Wolski, A. Terlin, M. Tabarant, M. Pijolat and F. Valdivieso, J. Nucl. Mater., 362, 248 (2007). https://doi.org/10.1016/j.jnucmat.2007.01.049
  11. M. J. Donachie and S. J. Donachie, Superalloys - A Technical Guide, 2nd ed. p. 26, ASM International, Materials Park (2003).
  12. P. Shi and B. Sundman, $TCC^{TM}$ Thermo-Calc(R) Software User's Guide, ver. S, Foundation of Computational Thermodynamics Stockholm, Sweden (2008).
  13. S. H. Park, Modern Design of Experments Using MINITAB, Minyoungsa, Seoul (2010).
  14. JMatPro User's Guide, Sente Software Ltd., UK (2005).
  15. A. K. Jena and M. C. Chaturvedi, J. Mater. Sci., 19, 3121 (1984). https://doi.org/10.1007/BF00549796
  16. C. Booth-Morrison, R. D. Noebe and D. N. Seidman, Proceedings of the 11th Int'l Symposium Superalloys 2008, p. 73, TMS, Pennsylvania (2008).

Cited by

  1. Influences of Electrodeposition Variables on Mechanical Properties of Ni-Mn Electrodepositions vol.13, pp.3, 2014, https://doi.org/10.14773/cst.2014.13.3.102