Browse > Article
http://dx.doi.org/10.14773/cst.2013.12.3.132

Methodology of Ni-base Superalloy Development for VHTR using Design of Experiments and Thermodynamic Calculation  

Kim, Sung-Woo (Nuclear Materials Division, Korea Atomic Energy Research Institute)
Kim, Dong-Jin (Nuclear Materials Division, Korea Atomic Energy Research Institute)
Publication Information
Corrosion Science and Technology / v.12, no.3, 2013 , pp. 132-141 More about this Journal
Abstract
This work is concerning a methodology of Ni-base superalloy development for a very high temperature gas-cooled reactor(VHTR) using design of experiments(DOE) and thermodynamic calculations. Total 32 sets of the Ni-base superalloys with various chemical compositions were formulated based on a fractional factorial design of DOE, and the thermodynamic stability of topologically close-packed(TCP) phases of those alloys was calculated by using the THERMO-CALC software. From the statistical evaluation of the effect of the chemical composition on the formation of TCP phase up to a temperature of 950 oC, which should be suppressed for prolonged service life when it used as the structural components of VHTR, 16 sets were selected for further calculation of the mechanical properties. Considering the yield and ultimate tensile strengths of the selected alloys estimated by using the JMATPRO software, the optimized chemical composition of the alloys for VHTR application, especially intermediate heat exchanger, was proposed for a succeeding experimental study.
Keywords
design of experiments; intermediate heat exchanger; Ni-base superalloy; thermodynamic calculation; very high temperature gas-cooled reactor;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 C. Cabet and F. Rouillard, J. Nucl. Mater., 392, 235 (2009).   DOI   ScienceOn
2 K. G. E. Brenner and L. W. Graham, Nucl. Technol., 66, 404 (1984).   DOI
3 W. Ren and R. Swimdeman, J. Pressure Vessel Technol., 131, 024002-1 (2009).   DOI   ScienceOn
4 D.-J. Kim, G.-G. Lee, S.-W. Kim and H.-P. Kim, Corros. Sci. Tech., 9, 164 (2010).
5 D.-J. Kim, G.-G. Lee, S.-J. Jeong, W.-G. Kim and J.-Y. Park, Nucl. Eng. Tech., 43, 429 (2011).   DOI   ScienceOn
6 K. Mo, G. Lovicu, H.-M. Tung, X. Chen and J. F. Stubbins, J. Eng. Gas Turbines and Power, 133, 052908-1 (2011).   DOI   ScienceOn
7 S. Kihara, J. B. Newkirk, A. Ohtomo and Y. Saiga, Met. Trans. A, 11A, 1019 (1980).
8 Y. Kaji, H. Tsuji, H. Nishi, Y. Muto, H.-J. Penkalla and F. Schubert, J. Nucl. Sci. Tech., 39, 923 (2002).   DOI
9 Y. Tachibana and T. Iyoku, Nucl. Eng. Des., 233, 261 (2004).   DOI   ScienceOn
10 F. Rouillard, C. Cabet, K. Wolski, A. Terlin, M. Tabarant, M. Pijolat and F. Valdivieso, J. Nucl. Mater., 362, 248 (2007).   DOI   ScienceOn
11 M. J. Donachie and S. J. Donachie, Superalloys - A Technical Guide, 2nd ed. p. 26, ASM International, Materials Park (2003).
12 P. Shi and B. Sundman, $TCC^{TM}$ Thermo-Calc(R) Software User's Guide, ver. S, Foundation of Computational Thermodynamics Stockholm, Sweden (2008).
13 S. H. Park, Modern Design of Experments Using MINITAB, Minyoungsa, Seoul (2010).
14 JMatPro User's Guide, Sente Software Ltd., UK (2005).
15 A. K. Jena and M. C. Chaturvedi, J. Mater. Sci., 19, 3121 (1984).   DOI
16 C. Booth-Morrison, R. D. Noebe and D. N. Seidman, Proceedings of the 11th Int'l Symposium Superalloys 2008, p. 73, TMS, Pennsylvania (2008).