• Title/Summary/Keyword: Chattering

Search Result 388, Processing Time 0.027 seconds

Improvement of Dynamic Characteristics of Torsion on the Marine Propulsion Shafting System with Elastic Rubber Coupling (고무 탄성커플링을 갖는 선박 추진축계 비틀림의 동특성 개선)

  • Lee, D.C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.923-929
    • /
    • 2003
  • As for the marine propulsion shafting system using 4 stroke diesel engine, it is common to apply a reduction gear box between diesel engine and shafting to increase propulsion efficiency, which requires inevitably a certain elastic coupling to avoid chattering and hammering inside of gear box. In this study, the optimum method of rectifying propulsion shafting system in case of 750 ton fishing vessel is theoretically studied in a view of dynamic characteristics of torsion. After the replacement of diesel engine and gear box, the torsional vibration get worse and so some countermeasures are needed. The elastic coupling is modified from a present rubber coupling of block type having relatively high torsional stiffness to a rubber coupling haying two serially connected elements. Torsional vibration damper was installed at crankshaft free end additionally and moment of inertia of flywheel was adjusted. The dynamic characteristics of shafting system was improved by these modification. The theoretical analysis of torsional vibration are compared to measurement results using two laser torsion meters during the sea trial.

Pressure Control of Lockup Solenoid Valve for Automatic Transmission (자동변속기 록업솔레노이드밸브의 압력제어)

  • Park, Kwan-su-;Chung, Soon-Bae;Lee, Kyo-Il-
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.472-477
    • /
    • 1994
  • The lockup clutch is embeded on torque converter of automatic transmission to prevent the efficiency deterioration of torque converter in high speed. For improving fuel consumption rate, it is desirable to engage the lockup clutch earlier. But, it results in degrading shift quality, due to the transient torque. The transient clutch pressure which affects the shifting quality, should be controlled properly. In this study, to solve the problem, it is analysed the hydraulic circuit of lockup system including line pressure regulating circuit, established the nonlinear model, and designed the PID controller. The line pressure is supplied to the lockup clutch through the lockup control valve by switching the lockup solenoid valve on. In order to control the transient pressure actively, it is needed to control the lockup solenoid valve by closed loop control. The lockup solenoid valve is 2-way on-off valve, and is adequate for PWM control. To reduce the pressure chattering, the carrier frequency is increased. Target pressure profile is computed from optimized velocity difference profile throuth dynamic equation of vehicle system.

  • PDF

Force and Position Control of a Two-Link Flexible Manipulator with Piezoelectric Actuators (압전 작동기를 갖는 2 링크 유연 매니퓰레이터의 힘 및 위치 제어)

  • 김형규;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.428-433
    • /
    • 1997
  • This paper presents a new control strategy for the position and force control of flexible manipulators. The governing equation of motion of a two-link flexible manipulator which features piezoceramic actuators bonded on each flexible beam is derived via Hamilton's principle. The control torque of the motor to command desired position and force is determined by a sliding mode controller on the basis of the rigid-mode dynamics. In the controller formulation, the sliding mode controller with perturbation estimation(SMCPE) is adopted to determine appropriate control gains. The SMCPE is then incorporated with the fuzzy technique to mitigate inherent chattering problem while maintaining the stability of the system. A set of fuzzy parameters and control rules are obtained from a relation between estimated perturbation and actual perturbation. During the commanded motion, undesirable oscillation is actively suppressed by applying feedback control voltages to the piezoceramic actuators. These feedback voltages are also determined by the SMCPE. Consequently, accurate force and position control of a two-link flexible manipulator are achieved. Computer simulations are undertaken in order to demonstrate the effectiveness of the proposed control methodology.

  • PDF

Sliding Mode Trim and Attitude Control of a 2-00F Rigid-Rotor Helicopter Model

  • Jeong, Heon-Sul;Chang, Se-Myong;Park, Jin-Sung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.2
    • /
    • pp.23-32
    • /
    • 2005
  • An experimental control system is proposed for the attitude control of a simplified 2-DOF helicopter model. The main rotor is a rigid one, and the fuselage is simply supported by a fixed hinge point where the longitudinal motion is decoupled from the lateral one since the translations and the rolling rotation are completely removed. The yaw trim of the helicopter is performed with a tail rotor, by which the azimuthal attitude can be adjusted on the rotatable post in the yaw direction. The robust sliding mode control tracking a given attitude angle is proposed based on the flight dynamics. A pitch damper is inserted for the control of pitching angle while the compensator to reaction torque is used for the control of azimuth angle. Several parameters of the system are selected through experiments. The results shows that the proposed control method effectively counteracts nonlinear perturbations such as main rotor disturbance, undesirable chattering, and high frequency dynamics.

The Sensorless Speed Control of an Interior Permanent Magnet Synchronous Motor using an Adaptive Integral Binary Observer and a Fuzzy Controller (적분 바이너리 관측기와 퍼지 제어기를 이용한 IPMSM 센서리스 속도제어)

  • Lee, Hyoung;Kang, Hyoung-Seok;Jeong, U-Taek;Kim, Young-Seok;Shin, Jae-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.925-926
    • /
    • 2006
  • This paper presents a sensorless speed control of an interior permanent magnet synchronous motor using an adaptive integral binary observer and fuzzy logic controller. In view of composition with a main loop regulator and an auxiliary loop regulator, the binary observer has a property of the chattering alleviation in the constant boundary layer. However, the steady state estimation accuracy and robustness are dependent upon the width of the constant boundary. In order to improve the steady state performance of the binary observer, the binary observer is formed by adding extra integral dynamics to the switching hyperplane equation. Also, because the conventional fixed gain PI controller are very sensitive to step change of command speed, parameter variations and load disturbance, the fuzzy logic controller is used to compensate a fixed gain PI controller. Therefore, a gain PI is fixed and the IPMSM is drived at another speed region. The effectiveness of the proposed the adaptive integral observer and the fuzzy logic controller are confirmed by experimental results.

  • PDF

Robust Controller with Adaptation within the Boundary Layer Application to Nuclear Underwater Inspection Robot

  • Park, Gee-Yong;Yoon, Ji-Sup;Hong, Dong-Hee;Jeong, Jae-Hoo
    • Nuclear Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.553-565
    • /
    • 2002
  • In this paper, the robust control scheme with the improved control performance within the boundary layer is proposed. In the control scheme, the robust controller based on the traditional variable structure control method is modified to have the adaptation within the boundary layer. From this controller, the width of the boundary layer where the robust control input is smoothened out can be given by an appropriate value. But the improved control performance within the boundary layer can be achieved without the so-called control chattering because the role of adaptive control is to compensate for the uncovered portions of the robust control occurred from the continuous approximation within the boundary layer Simulation tests for circular navigation of an underwater wall-ranging robot developed for inspection of wall surfaces in the research reactor, TRIGA MARK III, confirm the performance improvement. Notational Conventions Vectors are written in boldface roman lower-case letters, e.g., x and y. Matrices are written in upper-case roman letters, e.g., G and B. And ∥.∥ means the Euclidean norm.

Morphine dependence is attenuated by red ginseng extract and ginsenosides Rh2, Rg3, and compound K

  • Yayeh, Taddesse;Yun, Kyunghwa;Jang, Soyong;Oh, Seikwan
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.445-452
    • /
    • 2016
  • Background: Red ginseng and ginsenosides have shown plethoric effects against various ailments. However, little is known regarding the effect of red ginseng on morphine-induced dependence and tolerance. We therefore investigated the effect of red ginseng extract (RGE) and biotransformed ginsenosides Rh2, Rg3, and compound K on morphine-induced dependence in mice and rats. Methods: While mice were pretreated with RGE and then morphine was injected intraperitoneally, rats were infused with ginsenosides and morphine intracranially for 7 days. Naloxone-induced morphine withdrawal syndrome was estimated and conditioned place preference test was performed for physical and psychological dependence, respectively. Western blotting was used to measure protein expressions. Results: Whereas RGE inhibited the number of naloxone-precipitated jumps and reduced conditioned place preference score, it restored the level of glutathione in mice. Likewise, ginsenosides Rh2, Rg3, and compound K attenuated morphine-dependent behavioral patterns such as teeth chattering, grooming, wet-dog shake, and escape behavior in rats. Moreover, activated N-methyl-D-aspartate acid receptor subunit 1 and extracellular signal-regulated kinase in the frontal cortex of rats, and cultured cortical neurons from mice were downregulated by ginsenosides Rh2, Rg3, and compound K despite their differential effects. Conclusion: RGE and biotransformed ginsenosides could be considered as potential therapeutic agents against morphine-induced dependence.

Control-Gain Estimation of Energy Dissipation Control Algorithms (에너지소산 제어 알고리듬의 제어이득 산정)

  • Lee Sang Hyun;Kang Sang Hoon;Min Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.343-350
    • /
    • 2004
  • This study is on control gain estimation of energy dissipation control algorithms. Velocity feedback saturated, bang bang, and energy gain control algorithms are proposed based on the Lyapunov stability theory and their performances are evaluated and compared. Saturation problem is considered in the design of the velocity feedback saturated and energy-gain control algorithms, and chattering problem in bang bang control is solved by using boundary layer. Numerical results show that the proposed control algorithms can dissipate the structural energy induced by wind loads efficiently.

Robust Adaptive Fuzzy Backstepping Control for Trajectory Tracking of an Electrically Driven Nonholonomic Mobile Robot with Uncertainties (불확실성을 가지는 전기 구동 논홀로노믹 이동 로봇의 궤적 추종을 위한 강인 적응 퍼지 백스테핑 제어)

  • Shin, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.10
    • /
    • pp.902-911
    • /
    • 2012
  • This paper proposes a robust adaptive fuzzy backstepping control scheme for trajectory tracking of an electrically driven nonholonomic mobile robot with uncertainties and actuator dynamics. A complete model of an electrically driven nonholonomic mobile robot described in this work includes all models of the uncertain robot kinematics with a nonholonomic constraint, the uncertain robot body dynamics with uncertain frictions and unmodeled disturbances, and the uncertain actuator dynamics with disturbances. The proposed control scheme uses the backstepping control approach through a kinematic controller and a robust adaptive fuzzy velocity tracking controller. The presented control scheme has a voltage control input with an auxiliary current control input rather than a torque control input. It has two FBFNs(Fuzzy Basis Function Networks) to approximate two unknown nonlinear robot dynamic functions and a robust adaptive control input with the proposed adaptive laws to overcome the uncertainties such as parameter uncertainties and external disturbances. The proposed control scheme does not a priori require the accurate knowledge of all parameters in the robot kinematics, robot dynamics and actuator dynamics. It can also alleviate the chattering of the control input. Using the Lyapunov stability theory, the stability of the closed-loop robot control system is guaranteed. Simulation results show the validity and robustness of the proposed control scheme.

PMSM Sensorless Speed Control Using a High Speed Sliding Mode Observer (고속 슬라이딩모드 관측기를 이용한 PMSM 센서리스 속도제어)

  • Son, Ju-Beom;Kim, Hong-Ryel;Seo, Young-Soo;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.256-263
    • /
    • 2010
  • The paper proposes a sensorless speed control strategy for a PMSM (Permanent Magnet Synchronous Motor) based on a new SMO (Sliding Mode Observer), which substitutes a signum function with a sigmoid function. To apply robust sensorless control of PMSM against parameter fluctuations and disturbance, the high speed SMO is proposed, which estimates the rotor position and angular velocity from the back EMF. The low-pass filter and additional position compensation of the rotor are used to reduce the chattering problem commonly found in sliding mode observer with signum function, which becomes possible by applying the sigmoid function with the control of a switching function. Also the proposed sliding mode observer with the sigmoid function has better efficiency than the conventional sliding mode observer since it adjusts the observer gain by variable boundary layer and estimates the stator resistance. The stability of the proposed sliding mode observer is verified by the Lyapunov second method in determining the observer gain. The validity of the proposed high speed PMSM sensorless velocity control has been demonstrated by real experiments.