Journal of the Korean Nuclear Society
Volume 34, Number 6, pp.553 ~ 565, December, 2002

Robust Controller with Adaptation within the Boundary Layer :
Application to Nuclear Underwater Inspection Robot

Gee Yong Park, Ji Sup Yoon, Dong Hee Hong, and Jae Hoo Jeong
Korea Atomic Energy Research Institute
150 Dukjin-dong, Yuseung-gu, Daejeon 305-353, Korea
gypark@kaeri.re.kr

{Receved June 12, 2002)

Abstract

In this paper, the robust control scheme with the improved control performance within the

boundary layer is proposed. In the control scheme, the robust controller based on the
traditional variable structure control method is modified to have the adaptation within the
boundary layer. From this controller, the width of the boundary layer where the robust control
input is smoothened out can be given by an appropriate value. But the improved control
performance within the boundary layer can be achieved without the so-called control chattering
because the role of adaptive control is to compensate for the uncovered portions of the robust
control occurred from the continuous approximation within the boundary layer. Simulation tests
for circular navigation of an underwater wall-ranging robot developed for inspection of wall
surfaces in the research reactor, TRIGA MARK i, confirm the performance improvement.
Notational Conventions

Vectors are written in boldface roman lower-case letters, e.g., X and y. Matrices are written in
upper-case roman letters, e.g., Gand B. And |- {| means the Euclidean norm.

Key Words : robust control, adaptive control within the boundary layer, underwater robot

1. Introduction

For controlling uncertain nonlinear systems,
the variable structure controller based on the
sliding mode is one of the most promising
candidates. In the design of sliding mode
controller (SMC), the sliding surface or switching
hyper plane is selected firstly and then, the
equivalent control and the high speed switching
control are derived by use of the sliding surface

553

[1112]. The sliding mode has intrinsically the
invariance property but this attractive feature
diminishes when SMC is implemented in control
fields because of smoothing out the control input
within the boundary layer for avoiding the high-
frequency control input known as control
chattering. In the conventional design of the
SMC, the width of the boundary layer is
generally thicker than the optimal width due to
the conservative setup of the switching control
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gain, and this inevitably reduces the control
precision around the sliding surface.

For the optimal trade off between the control
precision and the control chattering in deciding
the width of the boundary layer, Slotine and
Coetsee [3] proposed the adaptive sliding
controller, where the width of the boundary layer
is varied according to the variation of the
uncertainty. By use of this control method, the
control chattering phenomena can be eliminated
but the control performance could be degraded at
the time of the magnitude-increasing variation of
the uncertainty. And in this method, the bounds of
all uncertainties including external disturbances are
the pre-requisites that the control designer must
know before configuring the SMC, which may not
be easy to obtain for some complex systems to be
controlled or some systems under the
unexpectedly varying environments.

Elmali and Olgac [4} proposed the SMC with
perturbation estimation in which the switching
control gain is determined from the estimate of the
so-called perturbation that encloses both the
modeling uncertainties and the external
disturbances. From the estimation of the
perturbation, the width of the boundary layer can
be reduced significantly without the control
chattering but the width contraction cannot
continue beyond a criterion, otherwise control
chattering is generated.

In this paper, the method for resolving the
troublesome consideration of trade-offs between
the control chattering and the control precision is
proposed. In order to implement this method, an
adaptive control is introduced when feedback
dynamics reside in the boundary layer. This
adaptive control can circumvent the problem with
the boundary layer decision, guarantee the
stability, and provide the improvement of the
control performance within the boundary layer for
nonlinear systems with the uncertainty whose

dynamics are slow. In this control scheme, the
width of the boundary layer can be given by an
appropriate but fully conservative value. As
described later, the adaptive control in composed
of the static and the dynamic adaptation gains.
The dynamic gain is derived based on some
restricted properties of system dynamics. From the
property of the adaptation gains, this adaptive
control does not activate independently but rather,
keeping pace with the robust control, it
compensates the undesirable effects not covered
by the robust controller.

In this paper, the basic or equivalent control law
is derived on the nonlinear prediction model
suggested by Lu [5], which dictates the relationship
of a certain future output to the current input, so
that this can skip over the design of invariant
hyper plane. Robust controllers based on the
nonlinear prediction model for the SISO (Single
Input and Single Output) system were described in
Park, et al [6][7]. The control scheme presented in
this paper is the MIMO (Multi-Input and Multi-
QOutput} extension of the SISO case in Ref.[7]. For
convenience, throughout this paper, the
arguments t and x are sometimes omitted when no
confusion is likely to arise.

2. Robust Control Law
Consider the nonlinear system represented as
X =a(x)+B(x)u(t), y=e(x), (1)

where x eX cR" is the measurable state, ucU c
R" the control input, and yeR" the output. The
functions a, B, and ¢ that have appropriate
dimensions are supposed to be sufficiently smooth
and have finite magnitudes, respectively. The
domain X contains the origin and U is a compact
set. Almost all of mechanical robot dynamics can
be represented by Eq.(1), which is called the
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regular form {m <n).

Let r, be the relative degree of ith output
component. Then, Eq.(1) can be represented,
more generally, by

y (1) =f(x) + G(x)u(t), (2)

where y'=[y ... yu"™I", f(x)=[La"(cy) - La"(cu)l",
G(x) is nonsingular, and ith raw vector
g(x)=[Ly(La" " Yc)) +--Lo (L ~Y(c)). In the definitions,
¢ and b are ith component of output function and
jth column vector of B, respectively, and the
operator L means the Lie derivative [8], for
example, the Lie derivative of ¢, with respect to
f is defined as L,(c,)=:—;if and L{(c} is the rth
order Lie derivative of ¢, to f represented as
Li(e)=LdL{" '(c) = - = Li{-(LdLdc)) with
L{c)=c.. In Eq.(2), the superscript r means total
relative degree (r = ri+ -+ +1y).

As suggested by Lu [5], the future system and
desired outputs for time t+h (h>0) from current
time t are predicted by

y(t +h) = z(t) + A(Df (x) + G(u()], Ga)

ys(t+h)=z,(t)+ A(h)y, (1), (3b)

where y and vy, are the system output and desired
output, respectively, h is the prediction time
interval, ys = [y{! .- yi=I", and Ath) is the mxm

diagonal matrix represented as

A(h)=diag|:h—'— h' hm'}.
! ! r,!

2 m

The each component of z and z, are represented
as

z{t)=Alh) ${t) and zqt) = M(h) é4.t), (for i=1, ---.m)
! r,. INT
A

h
where }‘i(h)=[1»h,"‘,m], #i=yi, 9i, -+ s
$a:=[Yas, Yoy, - y& V", and all are the r; x 1

>

vector.

The future output error e{t+h) is defined as

e(t+h)=y(t+h)-y,(t+h)
=z (1) + A(WY(x) + A(M)G(x)u(t) (4)
= A(h)y; (1),

where z, = z - z,. The control objective for the
future output error to be minimized has the form

of

Jt+h) :%e(t+h)Te(t+h). {5)

The basic control law is produced from the fact
that the control input obtained at time t should
minimize the control objective at time t+h,
namely, aJ{t+h)/su(t) = 0. The basic control law
u. derived in this way, by use of Eq.(4), is as
follows

u (1) = ~(A(h)G(x))"’

(6)
2. + A - A5 (1)].

The closed loop dynamics by inserting the
control input Eq.(6) into Eq.(2) are expressed as

e'(t) + Ah) 'z, (1) =0, (7)

where e'=[e/""..e,,"|" = y' - y,. The feedback
dynamics in (7) are stable for r,<4 (i=1,---,m). As
can be seen in Eq.(6) and Eq.(7), the prediction
time interval h has the role of the controller gain
and also determines the feedback dynamics. If
r>4, the basic control law is modified such as

u, (1) = ~(A(h)G(x))”
2.0+ A@EE) - Ay (0 +v ()],

where vt)= -z.(t)+A(h)¥[t) and ith component of {t)
is represented as r{{t)=h.(h) 4t} with ¢.=[eé;.-.
e " . M, is composed of appropriate coefficients,
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so that the resulting feedback dynamics satisfy the
Hurwitz equation.

For the case that the nonlinear system has the
uncertainty that includes the modeling
uncertainties and the external disturbances, the

dynamic equation is represented as
Y () =1(x) + Gxu) +n (1), ®)

where n{t)=({f(x) - £ OO+GX) - Gx)u+del). f and
G are known functions and dg represents the
external disturbances. G should be nonsingular.

The correspeonding basic control law is

u (1) = ~(A()G(x))" 9)

e+ A0EC) - Ay )]

For deriving the robust and adaptive controls,
we make the following assumptions.
Assumption 1: The gross information for G and f
are obtainable, so that the bounds for those

functions can be identified in such a way that

”f(x) - f"(x)” <d.(x) and
Zwl = NG()()(A}(x)“l - Im“ <y, <l,forallxandt,

where Iy = GG ™'~ 1, 7. is a positive scalar value
less than 1, and I, is the m x m identity matrix.
Assumption 2: The magnitude of external
disturbances can be bounded by

ld.(x,t)|<dy forallxandt.

Assumption 3: Iy in Assumption 1 can be divided
by its diagonal and non-diagonal terms such that
Tu=Z%+Z where ¥ is the diagonal term and Zi°
is the off-diagonal term. It is supposed that the
magnitude of Z}i” is reasonably smaller than 1, i.e.,
=8I <1

Contro!l input is now such that u = u. + ug
where uy is the robust control. The feedback

dynamics with this control become
e () +A(h) "z, () =ug (D +n (), (10)

where ull ~ Gug. Eq.(10) can be further arranged
by

e (ty=T e (t)+ B, (u} (1) +n(1), (11)

where e, is the augmented error vector of r x1, Ty
and B, are, respectively, r x r and r xm matrices.

Define n=(f - f) + (G - G)u..dk. The magnitude
of . is supposed to be bounded by |n. | <d, in
which dy=de(x)+7, || d(x) || +des and d{x) =
- Alh) 'z, - fx)+yi.

The transformed robust control uy is defined
as

m(t)"

™ Jm)]
0 Sl1m =0

a1 im0

In (12), m is called, hereafter, the error measure
function and defined by m = e!PB, where the
symmetric positive definite matrix P satisfies, for a
positive definite matrix Q, the Lyapunov equation
of TTP+PI'= - Q. The positive scalar dy.x in
Eq.(12) is given by

1
I_Yo

(4, +&), (13)

max

where £ is a small non-negative value (£ >0).

At this time, we make the following proposition.
Proposition 1: Suppose the uncertain nonlinear
system is represented by Eq.(8) and Assumptions 1
and 2 are valid. Then, the basic control law Eq.(9)
and the robust control Eq.(12) with the switching
control gain in Eq.(13) guarantee the asymptotic
output tracking, i.e., y{t} —ydt) as t— .

Proof: See Appendix A. =
In order to avoid the control chattering, the
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transformed robust control Eq.(12) is modified as

dy 2O 2
(1) = ) . (4
~dp PO <o

where ¢ is the boundary value that determines the
width of the boundary layer.

The robust control is obtained by uz= G 'ull.
With the transformed robust control Eq.(14), the
asymptotic convergence of tracking error is
guaranteed for only the region outside the
boundary layer. The structure of the transformed
robust control is changed according to the status
of |m| to the boundary value £. With regard to
this notion, ||m | is called the error measure.

3. Adaptive Control Within the Boundary
Layer

The robust control derived in the previous
section has continuous values by linearizing the
discontinuous function within the boundary layer
and thereby, the control chattering can be
eliminated by just selecting the proper boundary
value of e&. However, the stability and
convergence of the feedback system cannot be
guaranteed within the boundary layer and may be
lost due to continuous approximation. Moreover,
the width of boundary layer is wanted to be as
small as possible for high tracking precision but is,
in reality, set to a more larger value due to the
conservative setting of the uncertainty bound.

In order to remove the potential instability and
also improve the control performance within the
boundary layer, the adaptive control is introduced.
This adaptive control also provides a high tracking
precision under the conservative boundary value.

In this paper, an adaptation mechanism has two
distinguished features. First, the role of adaptive
control is to support the robust control within the

boundary layer. Second, its adaptation rule
involves two adaptation gains, that is, the static
adaptation gain and the dynamic adaptation gain.
The static adaptation gain is a constant value as
can be seen in the conventional adaptation rules.
The dynamic adaptation gain is updated at every
control instance and varies according to the
behavior of the error measure within the boundary
layer.

The error dynamics with the control input u=u,
+uy+u, in which u, is the adaptive control are
represented by

e, =Te, +B, (ul +u’ +q +dY), (15)

where e, I',, B, , and 1 are defined in the previous
sections and u:[= Gu,. In Eq.(15), as different from
Eq.(11), the term dg is included and is defined as
the unexpected disturbance whose magnitude is
not too large.

Define

dty=nM®m+81) " ul(v), (16)

where 1, = (GG ") 'm+3(t) 'd}) and 8(t) is called
the dynamic adaptation gain with the range of
0 <8(t) < 1 within the boundary layer. Then, we
make the following proposition.

Proposition 2: Suppose again the nonlinear
system Eq.(8) with the unexpected disturbance as
in Eq.(15) and Assumptions 1 and 2 are valid. It is
assumed that the dynamics of uncertainty are
slow. If we set the adaptive updating law as

d(t) = -8 (GG ™) @O, 17)

where T'g is a positive definite diagonal matrix
called the static adaptation gain and also set the
dynamic adaptation gain by

S(t)=1-

U—ﬁéﬁﬂ (for || m(t)|l<e), (18)
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then, the asymptotic output tracking, y{t)—y.t) as
t—oo, for feedback system inside the boundary
layer can be achieved.
Proof: See Appendix B. =

For slow dynamics of uncertainty, the adaptive
updating law Eq.(17), with the assumption of the
slow variation of the dynamic adaptation gain, is
represented as

u) (1) = -3(t)’ T (G)Gx) ™) m()". (19)

The assumption of the negligible dynamics of
the dynamic adaptation gain is given from the fact
that it can never cause any serious problem in
control performance through the various control
simulations. The adaptive updating law for the
appropriate quantity of uncertainty is composed of
two types of gains as in Eq.{19): One is the static
adaptation gain 'y which has constant values and
the other the dynamic adaptation gain &{t} whose
value is updated for every control instance. But,
adaptive updating law Eq.(19) cannot be realized
because its structure contains the unknown
function G(x). To overcome this problem, Eq.(19)
is further manipulated as follows.

ul(t)=—58(t)’ 1 m(t) = 8(t)’T(Z,) ' m(t)",

=—5(t)2T 1, + 25 [ m(t) - ()2 To(Z20 Ym(e)”.

By Assumption 3, the second term in the right
hand side of the above equation is much smaller
than the first term and hence, the second term of
the right hand side can be neglected. Moreover, by
use of the fact that ||Zy [|< |2, | <1 and I, }I=1,
the terms in the bracket, lm+Zz, are always positive
definite (i.e., positive diagonal values). And thus,
the effect of I,,+ Zy can be involved into the static
adaptive gain I, by tuning the values in this gain.
Finally, the adaptive updating law is given by

al (1) = -8(1) [m(t)", (20)

with the proper tuning of the static adaptation
gain. Let t, be the time when the error measure
begins to enter the boundary layer and the
adaptive control at this time is set to zero. Then,
the adaptive control is obtained by

w(t) = f WY (tde and u, (1) =G(x)"u(1). 21)

Remarks:

{1) As can be seen in Appendix B, the adaptive
control shares the task of the robust control that
is the compensation for the undesired effects of
modeling uncertainties and disturbances within
the boundary layer. At the boundary layer
where the value of the dynamic adaptation gain
is small as in Eq.{18), the robust control takes
more portion of undesired effects and hence,
the adaptive control compensates small portion
of these effects. As the error measure goes
inside the boundary layer, the amount of the
task that the adaptive control should take
increases and finally, the adaptive control takes
almost amount of the task at points very close
to zero of the tracking error.

(2) As in Egs.(15) and (16), the unexpected
disturbance is included in deriving the adaptive
control and this effect is not reflected in the
robust control. The adaptive control can
compensate the effect of the unexpected
uncertainty that affects the system whose error
measure resides within the boundary layer. It is
noted that the unexpected disturbances can only
be manipulated within the boundary layer. For
reducing the damage of the unexpected
disturbances at the outside of the boundary
layer, some useful methods could be configured:
First, the bounded values of the modeling
uncertainties and the external disturbances are
set to sufficiently large values, respectively,
which will obviously demand the large control
authority. In order to reduce the undesired
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effects of the large control authority, the
boundary value is given to a large value so that
the reaching time of the error dynamics onto
the boundary layer could be shortened. At the
boundary layer, the value for the uncertainty
bound is changed into the minimum estimated
value and the adaptive control is activated for
compensating all undesired effects. Second, this
control method is incorporated with the control
method proposed by Yoo and Chung [9} or
Elmali and Olgac [4], where the switching
control gain is updated by on-line uncertainty
bound estimation.

(3) With the adaptive control, it is expected that
high tracking precision can be achieved under
the more conservative boundary value. This
means the control designer may set the
boundary value to a relatively large one just for
avoidance of the control chattering without
concerning about the degradation of the high
control precision.

5. Simulations

The controller described in the previous sections
is applied to the motion control of an underwater
wall-ranging robot (UWR) that was developed for
the inspection of the contaminated level on the
surfaces of inner wall and bottom in the nuclear
research reactor, TRIGA MARK IIi [10][11]. Fig.1
shows the UWR fabricated. This UWR is designed
to navigate autonomously on the wall surfaces and
within the water pool. Operational procedure of
UWR in the nuclear research reactor is depicted in
Fig.2. Detailed descriptions of this UWR are
presented in Ref.[10] and Ref.[11].

Fig.3 shows the two coordinate systems for
UWR, i.e., the global coordinate defined by (X, Y,
¢ ) and the local coordinate by (x, y, ¢). The
dynamic motion for UWR is described by

Fig. 1. Underwater Wall-Ranging Robot

) Remote Operating
— T — l

Reactor

Research

Reactor

Prototype Navigation TRIGA
UWR Path MARK I}

—-L—"_’—I

Fig. 2. Inspection Procedure of UWR

O "

Fig.3. Global and Local Coordinates of UWR
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X =M 'f (x,x) + M 'u,, (22)

where x is the state vector such that x = [x; x, x,]'
=[xy ¢ ]T (¢ is called the yaw or heading angle),
M, is the total mass (the sum of the robot mass
and the added mass) and f;, includes all resistive
forces (including drag forces), and u, is control
input given by resultant thrust forces. The outputs
of UWR are its state vector (x, y, ¢): the position
and the direction of UWR. M,, f,;, and u,are
formulated by

m, +X, 0 -m;y,
M, = 0
| —my, mgX, I, +N;

me+Y, mgXx, |,

[m,x % +(m, +X,,)¥0-X,, | X|%
fu =| myd* +(m + Y )%0-Y, V1Y | (23
mfxcx¢+meCY¢_Nn |¢'¢

ux,T Tl
u =lu,i={ T,+T, |,
Uyt T, -Ty)

where the subscripts u and v mean the velocities of
UWR in x and y directions respectively. Brief
descriptions and corresponding nominal values of

Table 1. Parameters of UNR

parameters in Eq.(23) are presented in Table 1.
The detailed descriptions for the dynamic equation
of UWR and the model parameters are presented
in Ref.[11].

In (22) and (23), the total mass and resistive
forces include uncertain terms. For controller
design, Eq.(22) is rearranged by

i=M;‘fM(x,X)+M;'u, +n, (24)

where n=(M, f,, —I\A/I,’lfAM)+(M;1— M;l)u,. Comparing
Eq.(24) with Eq.(8), M, 'f(M.'f,) is matched to
f (f) and M‘AI(I\A/IZI) is to G(é), respectively.

With the future output error defined as
e(t+h)=x(t+h)-x,{t+h), the basic control law for the
nominal system is

u () =—(A()M;")"! (25)
[ze +AMM ', - A(h)x, (t)],

where A(h) = diaglh’/2!,h’/21,h°/2]] and z,, =
e-+h ¢ with e, = x-x,.

All uncertain parameters except x,_ and y, vary in
the range of

Parameters Descriptions Nominal Value
mf Vehicle mass 41.77 Kg
Iz Moment of inertia for z axis 1.5087 Kg - m’
XC Position of center of mass in x axis 0 mm
yc Position of center of mass in y axis 0 mm
Xu Coeff. of hydrodynamic added mass force in x direction 7.68 Kg
Xy Coeff. of hydrodynamic added mass force in y direction 7.45 Kg
Xyr Coeff. of hydrodynamic added mass force 7.45 Kg
Yur Coeff. of hydrodynamic added mass force 7.68 Kg
Nr¢ Coeff. of hydrodynamic added moment of inertia torque 1.251 Kg - m’
X Coeff. of hydrodynamic drag force in x direction 18.24 Kg/m
Yy Coeff. of hydrodynamic drag force in y direction 25.20 Kg/m
Ny Rotational drag coefficient 1.798 Kg/ m
! Distance from the front thruster to the real thruster 836 mm
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where P, and P, are ith uncertain parameter and
its nominal value, respectively and o is the extent
of variation (os in M, are set to 6 and os in f, are
given by 5). The x, and y, are varied within the
range of -10~10mm. Under this condition, the
bounds of modeling uncertainties can be obtained

by
MM | <d,, = 0435638,
[l =M, -1, < v, = 0.692884,

It~ s de(x,0=
m, | ax, |7+ 8X,, || 3B +] AX,,
m Ay, |97 +]AY, [1X01+AY, 57 |,
m; |Ax, || X¢]+m; | Ay, || yo|+| AN, |9

%

where A means the maximum deviation between
the parameter and its nominal values.

The transformed robust control has the form of
Eq.(14) and d, in Eq.(13) becomes

d, =dp (x,0)dy 1M {1 +7, 1A (x50,

where d, = -Ah) 'z, + X,. The robust control is
ug(t)= I\A’I,u:(t). The adaptive control is

ul(t) = _L (1) I m(t)dr, and u, (t)=M,u¥ (1)

For the simulation test, the desired trajectories
for UWR are given by

0<t<10: Xo(t) = Racos($q(1)),
Ya(t) = Rasin(da(t)),
$a(t) =n/2+2n/ Tpam)t,

where X, and Y, are the desired position in the
global coordinate. The initial values of all states
are set to zero. The quantity given in the global
coordinate is converted into the corresponding

value in the local coordinate via the transformation

matrix such as

e, cos¢ sing Ol ey
e, |=|-sing cos¢ Ofe,
€, 0 0 1je,

Fig.4 shows the path tracking performance of
this controller. In the captions of the figures, the
acronym NPC represents the controller only
composed of the basic control law, the acronym
RNPC means the controller composed of the basic
and robust controls, and the acronym ARNPC is
used for indicating the controller composed of the
basic, robust, and adaptive controls. In this

simulations, the desired path was set by R, = 1m

(1) Desired Path ( )

(2) Trajectory of NPC ()
(3) Trajectory of RNPC (----- H
(4) Trajectory of ARNPC {(—— )

1.2+
104
0.8
0.8
044
024
0.0 4
021
-0.4 4
-06
-0.8 4
-1.0

Y {m)

12 AU SRR s
1.2-1.0-0.8-06-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2
X {m)

Fig. 4. Results of Circular Path Tracking of UWR
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004

0.03 4
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0.014; L

0.00 L7 \,,‘,"A;;‘ w
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Fig. 5. Error Measures for Boundary Value ¢ =
0.025
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Fig. 6. Behavior of Dynamic Adaptation Gain
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Fig. 7. Adaptive Estimation of Corresponding
Uncertainty

and T, = 10sec. The control instance T, is
100msec and the prediction time interval h is
given by 30 xT.. The boundary value € is 0.025,
diagonal terms in static adaptation gain are given
as [, = diag[500,500,500], and the matrix Q is
set by Q = diag[1,1,1,0.1, 0.1,0.1). The uncertain
parameters vary according to the appropriate
periodic functions whose periodic dynamics are
slow. Fig.5 shows the behaviors of error measures
for these three controls. As can be seen in Fig.4
and Fig.5, the robust control with the adaptive
control (ARNPC) shows the best control
performance. The boundary value ¢ = 0.025 is a

0.10 s ) L " s . L : .
0.09 4 L
0.08 4 +
— Eror measure by RNPC
0.07 4 Error measure by ARNPC F
2 006 A
g o
g .05 4 n
5 0.04 4 b
& 0034 L
0.02 4 +
00144 -
e S T S
[+] 1 2 3 4 5 6 7 8 9 10
Time (sec)

Fig. 8. Error Measures for Boundary Value ¢ =
0.08

little bit conservative when comparing with the
range of the error measure, which means the gain
in the robust control is more conservative.

Fig.6 shows the variation of the dynamic
adaptation gain. From t=0 to t=0.12 sec, this
value is zero because the error measure is at the
outside of the boundary layer in this time interval.
From t=0.12, the error measure begins to enter
into the boundary layer and thus the dynamic
adaptation gain gets a nonzero value. Fig.7 shows
the adaptive estimation of corresponding
uncertainty for x direction. The adaptive
estimations of other two directions are not
presented in this paper but their results are similar
to Fig.7. From Fig.7, it is concluded that the
adaptive control can estimate very well the
corresponding uncertainty with slow dynamics.
Fig.8 shows the behaviors of two error measures
where, in this case, the boundary value is given by
¢ = 0.08. From the results in Fig.5 and Fig.8, the
control performance of RNPC is deteriorated
when the boundary value is increased while the
control performance of ARNPC remains the same
except for the initial stage within the boundary
tayer.

The trajectories and the error measures for
sudden, unexpected disturbances are shown in
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Fig. 9. Results of Circular Path Tracking for
Unexpected Disturbances

Fig.9 and Fig.10, where the disturbance of d{ =
120, 20, O] is applied to the system dynamics
after the error measure enters into the boundary
layer. From the above results, the control
performance of RNPC is poor but the control
performance of ARNPC shows satisfactory
regardless of the unexpected disturbances. It is
thought that, for RNPC, no divergence of the error
measure at the outside of the boundary layer is due
to the very conservative setting of the gain in the
robust control. Throughout all simulation tests, the
control chattering is not observed except for a case
of RNPC under unexpected disturbances, though

not shown in this paper.
6. Conclusions

An adaptive control is introduced into the robust
control design in order to resolve the troublesome
problem for selecting the appropriate boundary
value and to improve the control performance
within the boundary layer. The adaptive control
does not compensate, independently, for the
effects of the modeling uncertainties and
disturbances but supports the task of the robust
control in that it estimates the portion of the
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Fig. 10. Error Measures (e=0.025) for Unexpected
Disturbances

reverse effects that are not addressed by the robust
control inside the boundary layer and compensates
for this portion so that the global asymptotic
stability of feedback dynamics within the boundary
layer can be achieved. The nonlinear prediction
model is used for developing the basic control law,
which helps skipping over the selection stage of
the proper hyper/sliding plane. This control
method is applied to the motion control of an
UWR developed for inspecting the radiation-
contaminated level on the wall surfaces in the
nuclear research reactor, TRIGA MARK IIl. From
the simulation results, this controller shows
satisfactory and encouraging control performance.
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Appendix A: Define the Lyapunov function
candidate V as

V=_ele, A1)

where P satisfies the following Lyapunov equation:
I'P+Pr= - Q, for Q>0.

By use of Eq.{11), the time derivative of V is
represented as

V=-LelQe, +ePB, (! +1)

T2

=—%e3Qev +mu) +n

The time derivative of V is further manipulated,
by use of Eq.(12), such that

VS_EeIQeV+mur+Hm|H|'ﬂ”

I — ——
s-zeQe,~ @i+ plim|l+d, | (A2)
s—leTQe,.

2

Since Q is positive definite, V is negative semi-
definite as can be seen in (A2). Therefore, the
Lyapunov function {Al) is the non-increasing
function. If the initial value of Lyapunov function,
V(0}, is finite, then V() is finite for vt>0. From
(A1), e, is also finite for vt>0 (e,€L.). By
examining Eq.(11), e, is finite (e,€L.) for vt>0
because e, and other terms such as I, B,, u::, and
1 are finite for vt>0 . By integrating both sides
of (A2) from t=0 to t=90, the following inequality
is obtained:

[’ e, (1)" Qe, (1)t < 2[V(0) - V()] < 0.

From the above result, the augmented error e, is
square integrable (e,EL,). The fact that e,€L,NL..
and e,€L. concludes, by Barbalat’ s lemma [1],
that e,(t})—0 as t—oo. And this means equally e(t)
—0 as t—o0. Hence, y{t)—y,(t} as t—oo can be
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achieved. m
Appendix B: Let the Lyapunov functicn within
the boundary layer be

With Eq.(15), the time derivative of V becomes

: 1 _ o
V=—Eeer\,+m(u,“{'+uf('+n+dg)+dTrs"d,
=—-%e\T,Qe\, +muy +mi(l-38(t))m, +Z,uy]

FRB(N, +dY ]+ (L, +Zy ol +d TS,

_ 13RS —_ M = M
——Ee\,QeV +muy +m|(l-3(t)n, +Z,u,

+ WO MGEG " [0 + 5wt ]+d Ty 'd.
~-LeTe, +mut + w1 s(yn, + Y]
=-7e.Qe, mu, +m(l-3(t)m, +Zu,
(B1)

+ [ﬁi&(t)G(x)é(x)‘l +d'T

When Eq.(17) is applied to (B1), the terms in the

bracket in the most right hand side are vanished
out and the resulting time derivative of V is
bounded by

V< —%eIQQ +mu) +[ml(1-3(O)m, +Zuy ).

(B2)

By applying Eq.(14) and Eq.(18) to (B2), (B2)
can be further rearranged into

Imi e

max c
€

V< —%eerv— -y d
1 g
< _Ee”Qe"' {B3)

From the results in Appendix A, (B3) produces
y(t}—y,(t) as t—oo. Therefore, asymptotic output
tracking can be achieved for the feedback system

inside the boundary layer.
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