• 제목/요약/키워드: Charpy impact

검색결과 243건 처리시간 0.021초

Thermal Aging Embrittlement in LWR Primary Pressure Boundary Components

  • Kim, Sunki;Kim, Yongsoo;Wonmok Jae
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1995년도 춘계학술발표회논문집(2)
    • /
    • pp.635-640
    • /
    • 1995
  • Two techniques for the verification of the phase separation in ferrite phase of primary pressure bounary component materials, the primary cause of thermal aging embrittlement, are presented. Data base of room-temperature Charpy V-notch impact energy during reactor service was estimated as a measure of the degree of embrittlement. The serviceable period of CF-3 and CF-8 alloys as the primary pressure boundary components may be acceptably extended for 60 years of lifetime. However, the integrity of CF-8M alloys can be degraded seriously after several years of service in the nuclear reactor.

  • PDF

Zr-기 벌크 아몰퍼스 금속의 충격 파괴 거동 (Impact Fracture Behaviors of Zr-Based Bulk Amorphous Metals)

  • 고동균;정영진;신형섭;오상엽
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1246-1251
    • /
    • 2003
  • The fracture behaviors of Zr-based bulk amorphous metals(BAMs) having compositions of $Zr_{55}Al_{10}Ni_{5}Cu_{30}$, were investigated under impact loading and quasi-static conditions. For experiments, a newly devised instrumented impact testing apparatus and the subsize Charpy specimens were used. The influences of loading rate and the notch shape on the fracture behavior of the Zr-based BAM were examined. The Zr-based BAMs showed an elastic deformation behavior without any plastic deformation on it before fracture. Most fracture energies were absorbed in the process of the crack initiation. The maximum load and fracture absorbed energy under quasi-static condition were larger than those under impact condition. However, there existed relatively insignificant notch shape effect. Fracture surfaces under impact loading were smoother than those under quasi-static loading. The absorbed fracture energy appeared differently depending on the extent of the vein-like pattern region due to the shear bands developed at the notch tip. It can be found that the fracture energy of the Zr-Al-Ni-Cu alloy is closely related with the development of shear bands during fracture.

  • PDF

납착강도 충격시험 평가법에 관한 연구 (A Research on Evaluation Methods of Testing Impact of the Strength of Soldering)

  • 김사학
    • 대한치과기공학회지
    • /
    • 제21권1호
    • /
    • pp.55-65
    • /
    • 1999
  • So far, I Conducted an examination with focus on the type, characteristic, and test methods of impact test. which is a type of mechanical that evaluate materials. As mentioned previously, in testing soldering strength of soldering is the load when the object under experiment is broken down with the result of flexibility test or peel test. In this method, a hevay load is necessary until alloy of parent metal is bended, if the alloy of the parent metal has a large mechanical quality(peel strength or resisting power). Once the alloy of the parent metal is bended, however, it tends to come into pieces abruply form the part where soldered. Therefore, a metal has a high breakdown value if the degree of strength of its parent metal is high even if the result of measurement indicates otherwise. Thus, the result of the test did not correspond to the clinical result. Therefore, this study concludes as the following from a test of strength of soldering by mean of conducting an impact test, which is a type of mechanical evaluation methods : 1. Among various impact tests, a charpy thpe is more appropriate than the izod type in testing strength of soldering. 2. As far as test piece is concerned, to use subsized impact test piece is appropriate in the impact test in that it does not have notch. 3. In the matter of analysis, it is appropriate to measure absorbing energy which results from rupture of test piece.

  • PDF

국산 플럭스 코어드 와이어 용접에서 입열량이 용접부의 미세조직과 인성에 미치는 영향 (A Study on the Effect of Heat Input on the Microstructure and Toughness of Weldments Made by Domestic Flux Cored Wires.)

  • 고진현;국정한
    • Journal of Welding and Joining
    • /
    • 제11권4호
    • /
    • pp.57-69
    • /
    • 1993
  • In the present study, the microstructure and Charpy V notch toughness of multipass $CO_2$ FCA weldment in three different heat inputs(1-3KJ/mm)were investigated. The weldments using two different domestic FCAW wires(AWS E71T-1 and E71T-5 equivalent) in C-Mn steel were chemically analysed. The following conclusions can be inferred. 1. T-1 wire Showed a stable arc transfer, less spatter and harsh, a better bead spreading and easy slag removal, whereas T-5 wire suffered from the arc stability, which tended to increase spatter and produce a more convex bead. 2.The microsturctures of the top beads of the weldments in three different heat inputs consisted of coarse-grained boundary ferrite and Widmanstatten ferrite side plate with increasing heat inputs. The modest fraction of acicular ferrite in the two wire weldments was observed in the 2KJ/mm heat input. 3.The fine-grained reheated zones of both welds consisted of a duplex microstructure of polygonal ferrite and second phases. 4. The basic flux weldment of T-5wires showed a higher Charpy impact property than that of T-1 wires because of a higher fraction of acicular ferrite in the weld microstructure.

  • PDF

RELATIONSHIP BETWEEN RADIATION INDUCTED YIELD STRENGTH INCREMENT AND CHARPY TRANSITION TEMPERATURE SHIFT IN REACTOR PRESSURE VESSEL STEELS OF KOREAN NUCLEAR POWER PLANTS

  • Lee, Gyeong-Geun;Lee, Yong-Bok;Kwon, Jun-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제44권5호
    • /
    • pp.543-550
    • /
    • 2012
  • The decrease in the fracture toughness of ferritic steels in a reactor pressure vessel is an important factor in determining the lifetime of a nuclear power plant. A surveillance program has been in place in Korea since 1979 to assess the structural integrity of RPV steels. In this work, the surveillance data were collected and analyzed statistically in order to derive the empirical relationship between the embrittlement and strengthening of irradiated reactor pressure vessel steels. There was a linear relationship between the yield strength change and the transition temperature shift change at 41 J due to irradiation. The proportional coefficient was about $0.5^{\circ}C$/MPa in the base metals (plate/forgings). The upper shelf energy decrease ratio was non-linearly proportional to the yield strength change, and most of the data lay along the trend curve of the US results. The transition regime temperature interval, ${\Delta}T_T$, was less than the US data. The overall change from irradiation was very similar to the US results. It is expected that the results of this study will be applied to basic research on the multiscale modeling of the irradiation embrittlement of RPV materials in Korea.

Ta 첨가원소 대체 Ti 첨가형 저방사화 페라이트/마르텐사이트 강의 미세조직과 기계적 특성 (Microstructures and Mechanical Properties of Reduced-activation Ferritic/Martensitic (RAFM) Steels with Ti Substituted for Ta)

  • 설우경;이창훈;문준오;이태호;장재훈;강남현
    • 열처리공학회지
    • /
    • 제30권2호
    • /
    • pp.53-60
    • /
    • 2017
  • The aim of this study is to examine a feasibility to substitute Ti for Ta in reduced activation ferritic/martensitic (RAFM) steel by comparing a Ti-added RAFM steel with a conventional Ta-added RAFM steel. The microstructures and mechanical properties of Ta-, and Ti-added RAFM steels were investigated and a relationship between microstructures and mechanical properties was considered based on quantitative analysis of precipitates in two RAFM steels. Ta-, and Ti-added RAFM steels were normalized at $1000{\sim}1040^{\circ}C$ for 30 min and tempered at $750^{\circ}C$ for 2 hr. Both RAFM steels had very similar microstructures, that is, typical tempered martensite with relatively coarse $M_{23}C_6$ carbides at boundaries of grain and lath, and fine MX precipitates inside laths. The MX precipitates were identified as TaC in Ta-added RAFM steel and TiC or (Ti, W)C in Ti-added RAFM steel, respectively. It is believed that these RAFM steels show similar tensile and Charpy impact properties due to similar microstructures. Precipitate hardening and brittle fracture strength calculated with quantitative analysis of precipitates elucidated well the similar behaviors on the tensile and Charpy impact properties of Ta-, and Ti-added RAFM steels.

400MPa급 건축구조용 열간압연 H형강(SHN400)의 소재 특성 (Material Properties of 400MPa Grade Hot Rolled H-beam(SHN400) for Building Structure)

  • 김희동;최병정;김상섭;김철환;오영석
    • 한국강구조학회 논문집
    • /
    • 제23권4호
    • /
    • pp.515-522
    • /
    • 2011
  • 본 연구의 목적은 시험적 방법을 통해 SHN400 강재의 소재 특성이 건축구조용 강재로 적합한지를 평가하는 것이다. 이를 위해 국내에서 생산되는 열간 압연 H형강 중 최대 춤 및 최대 플랜지 두께의 H형강과 SHN400 강종의 주요 사용처가 될 보부재로 수요가 많은 H형강 규격을 대상으로 화학성분 평가, 인장강도, 매크로, 미크로 및 샤르피 충격 시험을 실시하였다. 각 시험은 관련 KS 규격에서 요구하는 시험 조건하에서 수행되었으며, 시험 결과 화학성분 및 기계적 특성과 관련된 모든 시험에서 SHN400 강종은 KS 규격(KS D 3866)의 요구 조건과 내진설계시 강재에 요구되는 조건들을 만족하는 것으로 나타났다. 특히 용접성과 관련된 탄소당량(Ceq)과 비탄성 변형능력과 관련된 항복비의 경우 KS 규격을 상회하는 결과를 나타내었다. 따라서 SHN400 강재는 소재 특성 측면에서 건축구조용 강재에 적합한 것으로 판단된다.

액체로켓 연소기용 Inconel 718 주조 및 단조 합금의 전자빔 용접부 미세조직 및 극저온 특성 (A Study on Microstructures and Cryogenic Mechanical Properties of Electron Beam Welds between Cast and Forged Inconel 718 Superalloys for Liquid Rocket Combustion Head)

  • 홍현욱;배상현;권순일;이재현;도정현;최백규;김인수;조창용
    • Journal of Welding and Joining
    • /
    • 제31권6호
    • /
    • pp.50-57
    • /
    • 2013
  • Characterization of microstructures and cryogenic mechanical properties of electro beam (EB) welds between cast and forged Inconel 718 superalloys has been investigated. Optimal EBW condition was found in the beam current range of 36~39 mA with the constant travel speed of 12 mm/s and arc voltage of 120 kV for 10 mm-thick specimens. Electron beam current lower than 25 mA caused to occur the liquation microfissuring in cast-side heat affected zone (HAZ) of EB welds. The HAZ liquation microfissure was found on the liquated grain boundaries with resolidified ${\gamma}/Laves$ and ${\gamma}/NbC$ eutectic constituents. EBW produced welds showing a fine dendritic structure with relatively discrete Laves phase due to fast cooling rate. After post weld aging treatment, blocky Laves phase and formation of ${\gamma}^{\prime}+{\gamma}^{{\prime}{\prime}}$ strengtheners were observed. Presence of primary strengthener and coarse Laves particles in PWHT weld may cause to reduce micro-plastic zone ahead of a crack, leading to a significant decrease in Charpy impact toughness at $-196^{\circ}C$. Fracture initiation and propagation induced by Charpy impact testing were discussed in terms of the dislocation structures ahead of crack arisen from the fractured Laves phase.

원자로압력용기용 SA508 Gr.4N Ni-Mo-Cr계 저합금강 용접열영향부의 용접후열처리에 따른 미세조직과 기계적 특성 평가 (Evaluation of Microstructure and Mechanical Properties on Post-Weld Heat Treatment in the Heat Affected Zone of SA508 Gr.4N Ni-Mo-Cr Low Alloy Steel for Reactor Pressure Vessel)

  • 이윤선;김민철;이봉상;이창희
    • 대한금속재료학회지
    • /
    • 제47권3호
    • /
    • pp.139-146
    • /
    • 2009
  • The heat-affected zone (HAZ) of SA508 Gr.4N Ni-Mo-Cr low alloy steel, which has higher Ni and Cr contents than SA508 Gr.3 Mn-Mo-Ni low alloy steel, was investigated on the microstructure and mechanical properties. The HAZ was categorized into seven characteristic zones (CGCG, FGCG, ICCG, SCCG, FGFG, ICIC and SCSC-HAZ) according to the peak temperature from the thermal cycle experienced during multi-pass welding. Post Weld Heat Treatment (PWHT) was conducted in the temperature range of $550{\sim}610^{\circ}C$ for 30 hours to evaluate the effect of PWHT conditions on the microstructure and mechanical properties. Before PWHT, CGHAZ and FGFGHAZ showed high yield strength (YS) ranging from 1000 to 1250 MPa, while YS of SCSCHAZ decreased from 607 MPa (observed for base metal) to 501 MPa. The Charpy impact energies of sub-HAZs fell below 100J at $-29^{\circ}C$, except in the SCSCHAZ. By applying PWHT to sub-HAZ specimens, YS decreased as the PWHT temperature increased. In the case of CGHAZs and FGFGHAZ heat-treated at $610^{\circ}C$, YS dropped drastically to the range of 654~686 MPa. From the Charpy impact test, the upper-shelf energy (USE) increased to approximately 250J and Index temperature ($T_{68J}$) decreased below $-50^{\circ}C$. Specifically, in FGFG, ICIC and SCSC-HAZ, $T_{68J}$ was below -110, which was lower than the case of base metal.

머신러닝을 이용한 충격파면 해석에 관한 연구 (A Machine Learning Program for Impact Fracture Analysis)

  • 이승진;김기만;최성대
    • 한국기계가공학회지
    • /
    • 제20권1호
    • /
    • pp.95-102
    • /
    • 2021
  • Analysis of the fracture surface is one of the most important methods for determining the cause of equipment structural failure. Whether structural failure is caused by impact or fatigue is necessary information in industrial fields. For ferrous and non-ferrous metal materials, two fracture phenomena are generated on the fracture surface: ductile and brittle fractures. In this study, machine learning predicts whether the fracture is based on ductile or brittle when structurural failure is caused by impact. The K-means algorithm calculates this ratio by clustering the brittle and ductile fracture data from a photograph of the impact fracture surface, unlike the existing method, which calculates the fracture surface ratio by comparison with the grid type or the reference fracture surface shape.