DOI QR코드

DOI QR Code

Microstructures and Mechanical Properties of Reduced-activation Ferritic/Martensitic (RAFM) Steels with Ti Substituted for Ta

Ta 첨가원소 대체 Ti 첨가형 저방사화 페라이트/마르텐사이트 강의 미세조직과 기계적 특성

  • Seol, Woo-Kyoung (Department of Materials Science and Engineering, Pusan National University) ;
  • Lee, Chang-Hoon (Ferrous Alloy Department, Korea Institute of Materials Science) ;
  • Moon, Joonoh (Ferrous Alloy Department, Korea Institute of Materials Science) ;
  • Lee, Tae-Ho (Ferrous Alloy Department, Korea Institute of Materials Science) ;
  • Jang, Jae Hoon (Ferrous Alloy Department, Korea Institute of Materials Science) ;
  • Kang, Namhyun (Department of Materials Science and Engineering, Pusan National University)
  • 설우경 (부산대학교 재료공학과) ;
  • 이창훈 (한국기계연구원 부설 재료연구소 철강재료연구실) ;
  • 문준오 (한국기계연구원 부설 재료연구소 철강재료연구실) ;
  • 이태호 (한국기계연구원 부설 재료연구소 철강재료연구실) ;
  • 장재훈 (한국기계연구원 부설 재료연구소 철강재료연구실) ;
  • 강남현 (부산대학교 재료공학과)
  • Received : 2017.02.28
  • Accepted : 2017.03.28
  • Published : 2017.03.30

Abstract

The aim of this study is to examine a feasibility to substitute Ti for Ta in reduced activation ferritic/martensitic (RAFM) steel by comparing a Ti-added RAFM steel with a conventional Ta-added RAFM steel. The microstructures and mechanical properties of Ta-, and Ti-added RAFM steels were investigated and a relationship between microstructures and mechanical properties was considered based on quantitative analysis of precipitates in two RAFM steels. Ta-, and Ti-added RAFM steels were normalized at $1000{\sim}1040^{\circ}C$ for 30 min and tempered at $750^{\circ}C$ for 2 hr. Both RAFM steels had very similar microstructures, that is, typical tempered martensite with relatively coarse $M_{23}C_6$ carbides at boundaries of grain and lath, and fine MX precipitates inside laths. The MX precipitates were identified as TaC in Ta-added RAFM steel and TiC or (Ti, W)C in Ti-added RAFM steel, respectively. It is believed that these RAFM steels show similar tensile and Charpy impact properties due to similar microstructures. Precipitate hardening and brittle fracture strength calculated with quantitative analysis of precipitates elucidated well the similar behaviors on the tensile and Charpy impact properties of Ta-, and Ti-added RAFM steels.

Keywords

References

  1. G. McCraken, P. Stott, Fusion : The Energy of the Universe, Academic Press (2005).
  2. A. A. F. Tavassoli : J. Nucl. Mater. 302 (2002) 73. https://doi.org/10.1016/S0022-3115(02)00794-8
  3. R. L. Klueh, D. S. Gelles, S. Jitsukawa, A. Kimura, G. R. Odette, B. van der Schaaf and M. Victoria : J. Nucl. Mater. 307 (2002) 455.
  4. T. Muroga, M. Gasparotto and S. J. Zinkle : Fusion Eng. And Des. 61 (2002) 13.
  5. S. M. Park, S. I. Hong and T. K. Kim : Korean J. Met. Mater. 52 (2013) 713.
  6. Baldev Raj and T. Jayakumar : J. Nucl. Mater. 417 (2011) 72. https://doi.org/10.1016/j.jnucmat.2011.02.032
  7. A. Alamo, J. C. Brachet, A. Castaing, C. Lepoittevin and F. Barcelo : J. Nucl. Mater. 258 (1998) 1228.
  8. T. Shibayama, A. Kimura and H. Kayano : J. Nucl. Mater. 233 (1996) 270.
  9. Qunying Huang, Jiangang Li and Yixue Chen : J. Nucl. Mater. 329 (2004) 268.
  10. Jinnan Yu, Qunying Huang and Farong Wan : J. Nucl. Mater. 367 (2007) 97.
  11. T. Jayakumar, M. D. Mathew, K. Laha, S. K. Albert, S. Saroja, E. Rajendra Kumar, C. V. S. Murthy, G. Padmanabham, G. Appa Rao and S. Narahari Prasad : Fusion Sci. Tech. 65 (2014) 171. https://doi.org/10.13182/FST13-690
  12. M. Rieth, M. Schirra, A. Falkenstein, P. Graf, S. Heger, H. kempe, R. Lindau and H. Zimmermann : Forschungszentrum Karlsruhe GmbH, Karlsruhe (2003).
  13. R. L. Klueh : Current Opinion in Solid State and Mater. Sci. 8 (2004) 239. https://doi.org/10.1016/j.cossms.2004.09.004
  14. E. Wakai, T. Taguchi, T. Yamamoto and F. Takada : J. Nucl. Mater. 329 (2004) 1133.
  15. J. H. Jang, C. H. Lee, Y. U. Heo and D. W. Suh : Acta Mater. 60 (2012) 208-17. https://doi.org/10.1016/j.actamat.2011.09.051
  16. L. Tan, Y. Yang and J. T. Busby : J. Nucl Mater. 442 (2013) S13-S17. https://doi.org/10.1016/j.jnucmat.2012.10.015
  17. S. Kano, H. L. Yang, R. Suzue, Y. Matsukawa, Y. Satoh, H. Sakasegawa, H. Tanigawa and H. Abe : Nucl Mat Energy. 9 (2016) 331-337. https://doi.org/10.1016/j.nme.2016.09.017
  18. L. Pilloni, F. Attura, A. Calza-Bini, G. De Santis, G. Filacchioni, A. Carosi and S. Amato : J. Nucl Mater. (1998) 258-263.
  19. P. Fernandez, A. M. Lancha, J. Lapena, M. Serrano and M. Hernandez-Mayoral : J. Nucl Mater. 307 (2002) 495.
  20. E. Orowan : Symposium on International Stresses, Inst. of Metal, London (1947) 451.
  21. M. A. Meyers and K. K. Chawla : Mechanical Behavior of Materials, Prentice Hall Inc., New Jersey (1999) p. 484, 491.
  22. J. Moon, S. Kim, J.-i. Jang, J. Lee and C. Lee : Mat Sci Eng A 487 (2008) 552-557. https://doi.org/10.1016/j.msea.2007.10.046
  23. T. Hanamura, G. Yin and K. Nagai : ISIJ Int. 44(3) (2004) 610-617. https://doi.org/10.2355/isijinternational.44.610
  24. D. A. Curry and J. Knott : Met Sci, 12:11 (1978) 511-514. https://doi.org/10.1179/msc.1978.12.11.511
  25. A. Moitra, Arup Dasgupta, S. Sathyanarayanan, G. Sasikala, S. K. Albert, S. Saroja, A. K. Bhaduri, E. Rajendra Kumar and T. Jayakumar : Procedia Engineer. 86 (2014) 258-263. https://doi.org/10.1016/j.proeng.2014.11.036
  26. C.-H. Lee, J. Moon, M.-G. Park, T.-H. Lee, M,-H. Jang, H.C. Kim, and D.-W. Suh : J. Nucl. Mater. 455 (2015) 421-425.
  27. C.-H. Lee, J.-Y. Park, W.-K. Seol, J. Moon, T.-H. Lee, N. Kang, and H. C. Kim : Fus. Eng. Des, submitted.