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1. Introduction

Accident Fracture surface analysis is essential[1-3] to 

determine whether equipment structural failure is 

caused by impact or fatigue. However, it is difficult 

to distinguish between impact and fatigue fractures 

because they appear similar[1]. For ferrous and 

non-ferrous metals[4-7], the impact fracture surface is 

characterized by a combination of ductile and brittle 

fractures. The fatigue fracture surface is characterized 

by dimple and cleavage fractures along with brittle 

and ductile fractures. The combination of fracture 

types present depends on the environment and the 

properties of the material[1, 4-7]. In particular, the 

fracture characteristics vary according to temperature: 

brittle fracture dominates at low temperatures, and 

ductile fracture dominates at high temperatures[1-5]. 

Impact tests determine impact fracture characteristics 

according operating temperature of the equipment[4-8].
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ABSTRACT

Analysis of the fracture surface is one of the most important methods for determining the cause of 

equipment structural failure. Whether structural failure is caused by impact or fatigue is necessary information 

in industrial fields. For ferrous and non-ferrous metal materials, two fracture phenomena are generated on the 

fracture surface: ductile and brittle fractures.

In this study, machine learning predicts whether the fracture is based on ductile or brittle when structurural 

failure is caused by impact. The K-means algorithm calculates this ratio by clustering the brittle and ductile 

fracture data from a photograph of the impact fracture surface, unlike the existing method, which calculates 

the fracture surface ratio by comparison with the grid type or the reference fracture surface shape.
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Machine learning is a subfield of artificial 

intelligence wherein algorithms make predictions or 

decisions based on training data in the absence of 

explicit instructions[10]. The K-means algorithm is an 

unsupervised machine learning approach that can 

perform meaningful classification of images via 

cluster analysis.[4, 10-12]

The existing methods of measuring the ratio of 

brittle fracture surface and ductile fracture surface 

include a method using grid and a method through 

comparison with existing standard fracture rate table. 

By contrast, the K-means algorithm is a simple 

method to calculate the brittle fracture surface ratio 

by clustering the brittle fracture surface and the 

ductile fracture surface from a photograph of the 

impact fracture surface shape. The reliability of the 

K-means algorithm for predicting impact fractures 

was evaluated by comparing with standard shear 

fracture rate chart.

2. K-means Algorithm

The idea of K-means was started by Hugo 

Steinhaus in 1956 (Steinhaus, Hugo(1957)), ans then 

term “K-means” was first used by James MacQueen 

(MacQueen, J. B. (1967)). 

The K-means algorithm is one of unsupervised 

machine learning methods and It automatically 

clusters data in a number selected by user. It is 

simple and easy way to classify data using their 

feature data vectors. Also, it can classify areas from 

image with parameters representing the features.

K-means algorithm works as shown in Figure 1. 

In the first step, a random representative vector is 

generated as shown in Figure 1(a), and the distance 

from each data point to the representative vector is 

calculated. The data points closest to the 

representative vector form a cluster, as shown in 

Figure 1(b). After that, as shown in Figure 1(c), the 

centroid of the clustered data is set as the new 

representative vector, and clustering is performed 

again as shown in Figure 1(d). Clustering and 

updating the representative vector repeat as shown 

in Figures 1(e), 1(f), 1(g), 1(h). Clustering is 

complete if there is no change in the result or the 

iteration limit is reached[4, 10].

The K-means algorithm extracts information from 

an image via clustering[4, 10, 13]. The K-means 

algorithm simply classify the class by setting the 

number of cluster and the data vectors which can 

recognize class of data.

  (a)              (b)              (c)

  (d)              (e)              (f)

  (g)              (h)              (i)

Fig. 1 Illustration of the K-means algorithm using 

the re-scaled Old Faithful data set[10]

    (a)                       (b)

Fig. 2 The schematic of Charpy impact testing 

machine[5-6]
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3. Impact Test Method

3.1 Charpy Impact Test

The Charpy impact test determines the impact 

resistance of a test piece when an instantaneous 

load is applied to the material. The Charpy impact 

test is performed by supporting both ends of the 

specimen on the anvil, shown in Figure 2(b), of the 

Charpy impact tester, shown in Figure 2(a). The 

hammer swings down, and the impact tester 

measures the energy required to fracture the 

specimen[4-6, 8, 14]. Charpy test was conducted under 

room temperature  and its specimen was used for 

fracture surface classification.

3.2 Charpy Impact Fracture Surface 

Analysis Method

As Shown in Figure 3, proportion of fracture 

types depends on temperature, and the point at 

which the main fracture type changes is called 

ductile-brittle transition temperature (DBTT). DBTT 

is obtained by calculating using upper transition 

temperature and lower transition temperature which 

temperature is when the brittle fracture surface ratio 

is 0% or 100%. In the case of brittle fracture, the 

fracture energy of the specimen rapidly decreases 

during the impact test, and fracture by impact 

occurs easily at low temperatures. Because impact 

failure easily occurs at lower temperatures, it is 

important to study metal impact characteristics in a 

cryogenic environment[5-8]. To obtain DBTT, it is 

required to improve fracture classification method.

The fracture surface of the impact test piece is 

shown in Figure 4, and can be divided into brittle 

fracture surface, ductile fracture surface, and notch. 

Figure 4 shows the fracture surface of the impact 

test piece, with the brittle fracture surface at the 

center, and the ductile fracture surface at the edge.

The brittle fracture ratio is the proportion of 

brittle fracture when a material is fractured. This is

Fig. 3 Temperature-percent brittle fracture graph[15]

Fig. 4 Shape of fracture appearance of Charpy 

impact specimen[16]

calculated by dividing the brittle fracture surface 

area by the total fracture surface area. Currently, 

brittle fracture surface area is measured via using 

grid type or simply comparing fracture surface with 

a standard fracture ratio table, but these methods 

can be time consuming and inaccurate because it is 

subjective to comparing shape of fracture surface[2, 

4-6].

4. Fracture Surface Analysis Program 

Design

The fracture surface analysis program is written 

in MATLAB and uses the K-means function 

provided by MATLAB. The structure of the 

K-means function is[13] 

- 97 -



Seung-Jin Lee, Gi-Man Kim, Seong-Dae Choi 한국기계가공학회지 제 권 제 호: 20 , 1

����������������������������������������������������������������������������������������������������������������

[idx,C]

= kmeans(X,K,'distance','sq Euclidean','Replicates',10); 

Here, X denotes input data, K denotes the 

number of clusters, ‘distance’ denotes the use of the 

classification method using the distance between 

data, ‘sq Euclidean’ indicates that the distance is 

calculated using a commonly calculated Euclidean 

distance, an ‘Replicates’ is a function to set the 

number of repetitions to avoid the local 

minimum.[13] The output data ‘idx’ returns indexes 

which indicate data classified classes. So, it is 

possible to find which area the image pixels belong 

to. And output data ‘C’ returns representative 

vectors of classes.

Figure 5(a) shows the standard fracture surface 

ratio table. Also, Figure 5(a) was used for 

performance measurement. Figure 5(b) shows a 

guide for estimating impact fracture appearance[5].

The image shown in Figure 6 is pre-processed to 

remove the notch, adjust image size to a constant, 

and convert the image from RGB color space to

Fig. 6 Pre-Processed Fracture Appearance Image

La*b* color space converting 3 channels color to 1 

channel color by using only Luminance from La*b*. 

By leaving only the image to be classified, as 

shown in Figure 6, the program then divides the 

image into three areas: brittle fracture surface, 

ductile fracture surface, and background by set K as 

3. 

To classify the fracture surface using the 

K-means algorithm, a parameter for the pixel 

location is added because the parameter for color 

alone is insufficient to describe the feature, and this 

value increases as the distance from the center 

increases. 

  (a) Shear Fracture Appearance Charts

(b) Guide for Estimating Shear Fracture Appearance

Fig. 5 Standard shear fracture appearance charts[5]
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(a) Background region not removed

(b) Background region removed

Fig. 7 The distribution of pixel data values

(a)                       (b)

(c)                       (d)

Fig. 8 The results of clustering of fracture appearance

based on K-means algorithm

Now, the program separates image background 

from the fracture surface. By setting the number of 

clusters to three, the clusters at the edges are 

recognized as the background, and all the 

background color values are changed to 0. The 

fracture surface area and the background area are 

now separate and the pixels in the fracture surface 

area are counted. Figure 7 shows color and location 

values for each pixel and shows clusters classified 

by color. Figure 7(a) shows when the background 

pixel is not classified separately, and Figure 7(b) 

shows the distribution when the color value of the 

background pixels is set to 0. 

The next step of the program applies the 

K-means algorithm again to further classify the 

fracture surface into brittle fracture surface and 

ductile fracture surface. The reason the program 

proceeded in two steps is to correct the 

misclassified area of the fracture surface as a 

background.

After the fracture surface is completely classified, 

the program starts to count pixels of each area and 

calculate brittle fracture surface ratio by dividing 

brittle pixels and all of fracture surface pixels. 

Then, the results are printed in the program.

Figure 8 shows all the steps of the machine 

learning program. Figure 8(a) shows the image of a 

fracture surface that has been sized and transformed 

to La*b* color space. The K-means algorithm then 

categorizes that image into three clusters, as shown 

in Figure 8(b). When the outer area of the image is 

classified as background and given a color value of 

0, the image in Figure 8(c) is the result. Applying 

the K-means algorithm again yields the image 

shown in Figure 8(d).

5. Results and Discussion

5.1 Machine Learning Classification of a 

Fracture Surface
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Fig. 9 The comparison between real percent shear and 

calculated percent shear by K-means algorithm

  The program was executed using each image from 

standard fracture surface ratio table in the Figure 

5(a) to obtain the results shown in Figure 9, which 

is a graph of the brittle fracture surface ratio given 

by the standard fracture surface table and the brittle 

fracture surface ratio calculated via machine 

learning. The raw data of Figure 9 is shown in 

Table 1.

As shown in Figure 9 and Table 1, there is less 

than 3% classification error for images with between 

20% and 80% fracture surface, but there is more 

than 3% error for images with less than 10% or 

more than 90%  fracture surface. This can be 

attributed to the fact that there is not enough of 

each of the three regions for the clustering 

algorithm to work properly.

5.2 Machine Learning Program Reliability

To evaluate the reliability of the K-mean 

algorithm for calculating fracture surface ratios, 

impact tests were conducted on an aluminum alloy 

and SM45C. Aluminum alloys produce mostly 

ductile fracture surfaces, and the actual penetration 

rate is less than 10%. However, the K-means 

algorithm calculates a brittle fracture surface ratio of 

about 80%. This is likely the result of the fact that 

the image of the fracture surface shows no distinction

Fig. 10 Result of brittle fracture surface rate for 

SM45C by machine leaning program

Table 1 Raw data of the Comparison between Real 

Percent Shear and Calculated Percent Shear 

by K-means Algorithm (unit : %)

Real Percent 
Shear

10 20 30 40 50

Calculated 
Percent Shear

13.842 18.330 32.114 42.883 49.931

Real Percent 
Shear

60 70 80 90 -

Calculated 
Percent Shear

60.993 68.986 78.365 85.891

between ductile and brittle fracture surfaces. Also, 

many ductile fracture surfaces represent another 

boundary. Further research is needed to modify the 

algorithm and program to handle materials with an 

imbalance of fracture types.

 As shown in Figure 10, SM45C measured 12 

fracture surfaces in the range of 13% with a ratio 

of 58% to 71%. The results of the program show 

calculations in the range of 10%, ranging from 60% 

to 70%. The margin of error was also about 9%.

6. Conclusion

The existing method of fracture surface ratio 

analysis of impact test specimens is time consuming 

and inaccurate[2]. A machine learning program 
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written in MATLAB using the K-means algorithm 

automatically classifies the fracture surface data, 

saving time and excluding subjective judgements.

1. The program has been developed to classify 

fracture surface types and calculate the fracture 

surface ratio using the standard fracture ratio 

table. 

2. The program classifies the background and the 

fracture surface in the first order, and the second 

classifies the background and the brittle and 

ductile.

3. If the fracture surface ratio is extremely high or 

low, the error in classification is large, apparently 

because in the case of extreme fracture surface 

rate, one area is rarely identified and cannot be 

classified. 

4. In areas with less extreme fracture surface ratios 

(20-80%), we classify fracture types with less 

than 3% error.

5. The machine learning program classified SM45C 

impact fracture surfaces with about 9% error. 

Therefore, it is expected that the convergence of 

the material test field and the machine learning 

field will be possible in the future. 

6. If a machine learning program can reliably 

classify fracture surfaces, it could be used to 

select materials for industrial equipment, 

especially for use in extreme environments.
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