Browse > Article
http://dx.doi.org/10.12656/jksht.2017.30.2.53

Microstructures and Mechanical Properties of Reduced-activation Ferritic/Martensitic (RAFM) Steels with Ti Substituted for Ta  

Seol, Woo-Kyoung (Department of Materials Science and Engineering, Pusan National University)
Lee, Chang-Hoon (Ferrous Alloy Department, Korea Institute of Materials Science)
Moon, Joonoh (Ferrous Alloy Department, Korea Institute of Materials Science)
Lee, Tae-Ho (Ferrous Alloy Department, Korea Institute of Materials Science)
Jang, Jae Hoon (Ferrous Alloy Department, Korea Institute of Materials Science)
Kang, Namhyun (Department of Materials Science and Engineering, Pusan National University)
Publication Information
Journal of the Korean Society for Heat Treatment / v.30, no.2, 2017 , pp. 53-60 More about this Journal
Abstract
The aim of this study is to examine a feasibility to substitute Ti for Ta in reduced activation ferritic/martensitic (RAFM) steel by comparing a Ti-added RAFM steel with a conventional Ta-added RAFM steel. The microstructures and mechanical properties of Ta-, and Ti-added RAFM steels were investigated and a relationship between microstructures and mechanical properties was considered based on quantitative analysis of precipitates in two RAFM steels. Ta-, and Ti-added RAFM steels were normalized at $1000{\sim}1040^{\circ}C$ for 30 min and tempered at $750^{\circ}C$ for 2 hr. Both RAFM steels had very similar microstructures, that is, typical tempered martensite with relatively coarse $M_{23}C_6$ carbides at boundaries of grain and lath, and fine MX precipitates inside laths. The MX precipitates were identified as TaC in Ta-added RAFM steel and TiC or (Ti, W)C in Ti-added RAFM steel, respectively. It is believed that these RAFM steels show similar tensile and Charpy impact properties due to similar microstructures. Precipitate hardening and brittle fracture strength calculated with quantitative analysis of precipitates elucidated well the similar behaviors on the tensile and Charpy impact properties of Ta-, and Ti-added RAFM steels.
Keywords
RAFM steel; Ti; Microstructures; Mechanical properties; Precipitate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G. McCraken, P. Stott, Fusion : The Energy of the Universe, Academic Press (2005).
2 A. A. F. Tavassoli : J. Nucl. Mater. 302 (2002) 73.   DOI
3 R. L. Klueh, D. S. Gelles, S. Jitsukawa, A. Kimura, G. R. Odette, B. van der Schaaf and M. Victoria : J. Nucl. Mater. 307 (2002) 455.
4 T. Muroga, M. Gasparotto and S. J. Zinkle : Fusion Eng. And Des. 61 (2002) 13.
5 S. M. Park, S. I. Hong and T. K. Kim : Korean J. Met. Mater. 52 (2013) 713.
6 Baldev Raj and T. Jayakumar : J. Nucl. Mater. 417 (2011) 72.   DOI
7 A. Alamo, J. C. Brachet, A. Castaing, C. Lepoittevin and F. Barcelo : J. Nucl. Mater. 258 (1998) 1228.
8 T. Shibayama, A. Kimura and H. Kayano : J. Nucl. Mater. 233 (1996) 270.
9 Qunying Huang, Jiangang Li and Yixue Chen : J. Nucl. Mater. 329 (2004) 268.
10 Jinnan Yu, Qunying Huang and Farong Wan : J. Nucl. Mater. 367 (2007) 97.
11 T. Jayakumar, M. D. Mathew, K. Laha, S. K. Albert, S. Saroja, E. Rajendra Kumar, C. V. S. Murthy, G. Padmanabham, G. Appa Rao and S. Narahari Prasad : Fusion Sci. Tech. 65 (2014) 171.   DOI
12 M. Rieth, M. Schirra, A. Falkenstein, P. Graf, S. Heger, H. kempe, R. Lindau and H. Zimmermann : Forschungszentrum Karlsruhe GmbH, Karlsruhe (2003).
13 R. L. Klueh : Current Opinion in Solid State and Mater. Sci. 8 (2004) 239.   DOI
14 J. H. Jang, C. H. Lee, Y. U. Heo and D. W. Suh : Acta Mater. 60 (2012) 208-17.   DOI
15 L. Tan, Y. Yang and J. T. Busby : J. Nucl Mater. 442 (2013) S13-S17.   DOI
16 S. Kano, H. L. Yang, R. Suzue, Y. Matsukawa, Y. Satoh, H. Sakasegawa, H. Tanigawa and H. Abe : Nucl Mat Energy. 9 (2016) 331-337.   DOI
17 L. Pilloni, F. Attura, A. Calza-Bini, G. De Santis, G. Filacchioni, A. Carosi and S. Amato : J. Nucl Mater. (1998) 258-263.
18 P. Fernandez, A. M. Lancha, J. Lapena, M. Serrano and M. Hernandez-Mayoral : J. Nucl Mater. 307 (2002) 495.
19 E. Orowan : Symposium on International Stresses, Inst. of Metal, London (1947) 451.
20 M. A. Meyers and K. K. Chawla : Mechanical Behavior of Materials, Prentice Hall Inc., New Jersey (1999) p. 484, 491.
21 J. Moon, S. Kim, J.-i. Jang, J. Lee and C. Lee : Mat Sci Eng A 487 (2008) 552-557.   DOI
22 T. Hanamura, G. Yin and K. Nagai : ISIJ Int. 44(3) (2004) 610-617.   DOI
23 E. Wakai, T. Taguchi, T. Yamamoto and F. Takada : J. Nucl. Mater. 329 (2004) 1133.
24 D. A. Curry and J. Knott : Met Sci, 12:11 (1978) 511-514.   DOI
25 A. Moitra, Arup Dasgupta, S. Sathyanarayanan, G. Sasikala, S. K. Albert, S. Saroja, A. K. Bhaduri, E. Rajendra Kumar and T. Jayakumar : Procedia Engineer. 86 (2014) 258-263.   DOI
26 C.-H. Lee, J. Moon, M.-G. Park, T.-H. Lee, M,-H. Jang, H.C. Kim, and D.-W. Suh : J. Nucl. Mater. 455 (2015) 421-425.
27 C.-H. Lee, J.-Y. Park, W.-K. Seol, J. Moon, T.-H. Lee, N. Kang, and H. C. Kim : Fus. Eng. Des, submitted.