• Title/Summary/Keyword: Charlier polynomials

Search Result 5, Processing Time 0.017 seconds

Statistical Approximation of Szász Type Operators Based on Charlier Polynomials

  • Kajla, Arun
    • Kyungpook Mathematical Journal
    • /
    • v.59 no.4
    • /
    • pp.679-688
    • /
    • 2019
  • In the present note, we study some approximation properties of the Szász type operators based on Charlier polynomials introduced by S. Varma and F. Taşdelen (Math. Comput. Modelling, 56 (5-6) (2012) 108-112). We establish the rates of A-statistical convergence of these operators. Finally, we prove a Voronovskaja type approximation theorem and local approximation theorem via the concept of A-statistical convergence.

Szász-Kantorovich Type Operators Based on Charlier Polynomials

  • Kajla, Arun;Agrawal, Purshottam Narain
    • Kyungpook Mathematical Journal
    • /
    • v.56 no.3
    • /
    • pp.877-897
    • /
    • 2016
  • In the present article, we study some approximation properties of the Kantorovich type generalization of $Sz{\acute{a}}sz$ type operators involving Charlier polynomials introduced by S. Varma and F. Taşdelen (Math. Comput. Modelling, 56 (5-6) (2012) 108-112). First, we establish approximation in a Lipschitz type space, weighted approximation theorems and A-statistical convergence properties for these operators. Then, we obtain the rate of approximation of functions having derivatives of bounded variation.

ON KANTOROVICH FORM OF GENERALIZED SZÁSZ-TYPE OPERATORS USING CHARLIER POLYNOMIALS

  • Wafi, Abdul;Rao, Nadeem;Deepmala, Deepmala
    • Korean Journal of Mathematics
    • /
    • v.25 no.1
    • /
    • pp.99-116
    • /
    • 2017
  • The aim of this article is to introduce a new form of Kantorovich $Sz{\acute{a}}sz$-type operators involving Charlier polynomials. In this manuscript, we discuss the rate of convergence, better error estimates. Further, we investigate order of approximation in the sense of local approximation results with the help of Ditzian-Totik modulus of smoothness, second order modulus of continuity, Peetre's K-functional and Lipschitz class.

Krawtchouk Polynomial Approximation for Binomial Convolutions

  • Ha, Hyung-Tae
    • Kyungpook Mathematical Journal
    • /
    • v.57 no.3
    • /
    • pp.493-502
    • /
    • 2017
  • We propose an accurate approximation method via discrete Krawtchouk orthogonal polynomials to the distribution of a sum of independent but non-identically distributed binomial random variables. This approximation is a weighted binomial distribution with no need for continuity correction unlike commonly used density approximation methods such as saddlepoint, Gram-Charlier A type(GC), and Gaussian approximation methods. The accuracy obtained from the proposed approximation is compared with saddlepoint approximations applied by Eisinga et al. [4], which are the most accurate method among higher order asymptotic approximation methods. The numerical results show that the proposed approximation in general provide more accurate estimates over the entire range for the target probability mass function including the right-tail probabilities. In addition, the method is mathematically tractable and computationally easy to program.