References
- T.Acar, L.N.Mishra and V.N.Mishra, Simultaneous approximation for generalized Srivastava-Gupta operator, Journal of Function Spaces, 2015, Article ID 936308, (2015) 11 pages, doi:10.1155/2015/936308.
- S.N. Bernstein, Demonstration du theoreme de Weierstrass, fondee sur le calcul des probabilites, Commun. Soc. Math. Kharkow 2 (13) (1912-1913), 1-2.
- R.A. DeVore and G.G. Lorentz, Constructive Approximation, Grudlehren der Mathematischen Wissenschaften [Fundamental principales of Mathematical Sciences], (Springer-Verlag, Berlin, 1993).
- Z. Ditzian and V. Totik, Moduli of smoothness, Springer Series in Computational Mathematics, 8. Springer-Verlag, New York, 1987.
- R.B. Gandhi, Deepmala and V.N. Mishra, Local and global results for modified Szasz - Mirakjan operators, Math. Method. Appl. Sci. (2016), DOI:10.1002/mma.4171.
- H.Gonska and I.Rasa, Asymptotic behaviour of differentiated Bernstein polynomials, Mat. Vesnik, 61 (2009), 53-60.
- H.Gonska, M.Heilmann and I.Rasa, Kantorovich operators of order k, Numer. Funct. Anal. Optimiz. 32 (2011), 717-738. https://doi.org/10.1080/01630563.2011.580877
- M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in one Variable, Cambridge University Press, Cambridge, 2005.
- L.V. Kantorovich, Sur certains developpements suivant les polynomes la forme de S. Bernstein, I, II, C. R. Acad URSS, (1930) 563-568, 595-600.
-
J.P. King, Positive linear opeartors which preserves
$x^2$ , Acta Math. Hungar 99 (3) (2003), 203-208. https://doi.org/10.1023/A:1024571126455 - G.G. Lorentz, Mathematical Expositions, No. 8, Bernstein polynomials, University of Toronto Press, Toronto 1953.
- V.N. Mishra, K. Khatri and L.N. Mishra, On Simultaneous Approximation for Baskakov-Durrmeyer-Stancu type operators, Journal of Ultra Scientist of Physical Sciences 24 (3) (2012), 567-577.
- V.N. Mishra, K. Khatri, L.N.Mishra and Deepmala, Inverse result in simultaneous approximation by Baskakov-Durrmeyer-Stancu operators, Journal of In- equalities and Applications 2013, 2013:586.doi:10.1186/1029-242X-2013-586.
- V.N. Mishra, H.H. Khan, K. Khatri and L.N. Mishra, Hypergeometric Representation for Baskakov-Durrmeyer-Stancu Type Operators, Bulletin of Mathe-matical Analysis and Applications, 5 (3) (2013), 18-26.
- V.N. Mishra, K. Khatri and L.N. Mishra, Some approximation properties of q-Baskakov-Beta-Stancu type operators, Journal of Calculus of Variations, Volume 2013, Article ID 814824, 8 pages. http://dx.doi.org/10.1155/2013/814824.
- V.N. Mishra, K. Khatri and L.N. Mishra Statistical approximation by Kantorovich type Discrete q-Beta operators, Advances in Difference Equations 2013, 2013:345, DOI:10.1186/10.1186/1687-1847-2013-345.
- V.N. Mishra, P. Sharma and L.N. Mishra, On statistical approximation properties of q-Baskakov-Szasz-Stancu operators, Journal of Egyptian Mathematical Society 24 (3) (2016), 396-401. DOI:10.1016/j.joems.2015.07.005.
- V.N. Mishra, R.B.Gandhi and F.Nasierh, Simultaneous approximation by Szasz-Mirakjan-Durrmeyer-type operators, Bollettino dell'Unione Matematica Italiana 8 (4) (2016), 297-305. https://doi.org/10.1007/s40574-015-0045-x
- V.N. Mishra and R.B. Gandhi, Simultaneous approximation by Szasz-Mirakjan-Stancu-Durrmeyer type operators, Periodica Mathematica Hungarica 74 (1), (2017), 118-127. DOI:10.1007/s10998-016-0145-0.
- R.N. Mohapatra and Z. Walczak, Remarks on a class of Szsz-Mirakyan type operators, East J. Approx., 15 (2) (2009), 197-206.
- O. Szasz, Generalization of S. Bernstein's polynomials to the infinite interval, J. Research Nat. Bur. Standards Sci. 45 (3-4) (1950), 239-245. https://doi.org/10.6028/jres.045.024
- V. Totik, Approximation by Szasz-Mirakjan-Kantorovich operators in Lp(p > 1), Anal. Math. 9 (2) (1983), 147-167. https://doi.org/10.1007/BF01982010
- A. Wafi and N. Rao, Stancu-variant of generalized Baskakov operators, Filomat, (2015) (In Press).
- A. Wafi, N.Rao and D. Rai, Approximation properties by generalized-Baskakov-Kantorovich-Stancu type operators, Appl. Math. Inf. Sci. Lett., 4 (3) (2016), 111-118. https://doi.org/10.18576/amisl/040303
- A.Wafi and N. Rao, Szasz-Durremeyer operators based on Dunkl analogue, Com-plex Anal. Oper. Theory, (2017) 1-18. doi:10.1007/s11785-017-0647-7.
- A. Wafi and N. Rao, A generalization of Szasz-type operators which preserves constant and quadratic test functions, Cogent Mathematics (2016), 3: 1227023.
- S. Varma and F. Tasdelen, Szasz type operators involving Charlier polynomials, Math. Comput. Modeling, 56 (5-6) (2012) 118-122. https://doi.org/10.1016/j.mcm.2011.12.017
Cited by
- Szász-Gamma Operators Based on Dunkl Analogue vol.43, pp.1, 2017, https://doi.org/10.1007/s40995-017-0433-4