DOI QR코드

DOI QR Code

ON KANTOROVICH FORM OF GENERALIZED SZÁSZ-TYPE OPERATORS USING CHARLIER POLYNOMIALS

  • Wafi, Abdul (Department of Mathematics Jamia Millia Islamia) ;
  • Rao, Nadeem (Department of Mathematics Jamia Millia Islamia) ;
  • Deepmala, Deepmala (Mathematics Discipline, PDPM Indian Institute of Information Technology Design & Manufacturing)
  • Received : 2017.01.26
  • Accepted : 2017.03.20
  • Published : 2017.03.30

Abstract

The aim of this article is to introduce a new form of Kantorovich $Sz{\acute{a}}sz$-type operators involving Charlier polynomials. In this manuscript, we discuss the rate of convergence, better error estimates. Further, we investigate order of approximation in the sense of local approximation results with the help of Ditzian-Totik modulus of smoothness, second order modulus of continuity, Peetre's K-functional and Lipschitz class.

Keywords

References

  1. T.Acar, L.N.Mishra and V.N.Mishra, Simultaneous approximation for generalized Srivastava-Gupta operator, Journal of Function Spaces, 2015, Article ID 936308, (2015) 11 pages, doi:10.1155/2015/936308.
  2. S.N. Bernstein, Demonstration du theoreme de Weierstrass, fondee sur le calcul des probabilites, Commun. Soc. Math. Kharkow 2 (13) (1912-1913), 1-2.
  3. R.A. DeVore and G.G. Lorentz, Constructive Approximation, Grudlehren der Mathematischen Wissenschaften [Fundamental principales of Mathematical Sciences], (Springer-Verlag, Berlin, 1993).
  4. Z. Ditzian and V. Totik, Moduli of smoothness, Springer Series in Computational Mathematics, 8. Springer-Verlag, New York, 1987.
  5. R.B. Gandhi, Deepmala and V.N. Mishra, Local and global results for modified Szasz - Mirakjan operators, Math. Method. Appl. Sci. (2016), DOI:10.1002/mma.4171.
  6. H.Gonska and I.Rasa, Asymptotic behaviour of differentiated Bernstein polynomials, Mat. Vesnik, 61 (2009), 53-60.
  7. H.Gonska, M.Heilmann and I.Rasa, Kantorovich operators of order k, Numer. Funct. Anal. Optimiz. 32 (2011), 717-738. https://doi.org/10.1080/01630563.2011.580877
  8. M.E.H. Ismail, Classical and Quantum Orthogonal Polynomials in one Variable, Cambridge University Press, Cambridge, 2005.
  9. L.V. Kantorovich, Sur certains developpements suivant les polynomes la forme de S. Bernstein, I, II, C. R. Acad URSS, (1930) 563-568, 595-600.
  10. J.P. King, Positive linear opeartors which preserves $x^2$, Acta Math. Hungar 99 (3) (2003), 203-208. https://doi.org/10.1023/A:1024571126455
  11. G.G. Lorentz, Mathematical Expositions, No. 8, Bernstein polynomials, University of Toronto Press, Toronto 1953.
  12. V.N. Mishra, K. Khatri and L.N. Mishra, On Simultaneous Approximation for Baskakov-Durrmeyer-Stancu type operators, Journal of Ultra Scientist of Physical Sciences 24 (3) (2012), 567-577.
  13. V.N. Mishra, K. Khatri, L.N.Mishra and Deepmala, Inverse result in simultaneous approximation by Baskakov-Durrmeyer-Stancu operators, Journal of In- equalities and Applications 2013, 2013:586.doi:10.1186/1029-242X-2013-586.
  14. V.N. Mishra, H.H. Khan, K. Khatri and L.N. Mishra, Hypergeometric Representation for Baskakov-Durrmeyer-Stancu Type Operators, Bulletin of Mathe-matical Analysis and Applications, 5 (3) (2013), 18-26.
  15. V.N. Mishra, K. Khatri and L.N. Mishra, Some approximation properties of q-Baskakov-Beta-Stancu type operators, Journal of Calculus of Variations, Volume 2013, Article ID 814824, 8 pages. http://dx.doi.org/10.1155/2013/814824.
  16. V.N. Mishra, K. Khatri and L.N. Mishra Statistical approximation by Kantorovich type Discrete q-Beta operators, Advances in Difference Equations 2013, 2013:345, DOI:10.1186/10.1186/1687-1847-2013-345.
  17. V.N. Mishra, P. Sharma and L.N. Mishra, On statistical approximation properties of q-Baskakov-Szasz-Stancu operators, Journal of Egyptian Mathematical Society 24 (3) (2016), 396-401. DOI:10.1016/j.joems.2015.07.005.
  18. V.N. Mishra, R.B.Gandhi and F.Nasierh, Simultaneous approximation by Szasz-Mirakjan-Durrmeyer-type operators, Bollettino dell'Unione Matematica Italiana 8 (4) (2016), 297-305. https://doi.org/10.1007/s40574-015-0045-x
  19. V.N. Mishra and R.B. Gandhi, Simultaneous approximation by Szasz-Mirakjan-Stancu-Durrmeyer type operators, Periodica Mathematica Hungarica 74 (1), (2017), 118-127. DOI:10.1007/s10998-016-0145-0.
  20. R.N. Mohapatra and Z. Walczak, Remarks on a class of Szsz-Mirakyan type operators, East J. Approx., 15 (2) (2009), 197-206.
  21. O. Szasz, Generalization of S. Bernstein's polynomials to the infinite interval, J. Research Nat. Bur. Standards Sci. 45 (3-4) (1950), 239-245. https://doi.org/10.6028/jres.045.024
  22. V. Totik, Approximation by Szasz-Mirakjan-Kantorovich operators in Lp(p > 1), Anal. Math. 9 (2) (1983), 147-167. https://doi.org/10.1007/BF01982010
  23. A. Wafi and N. Rao, Stancu-variant of generalized Baskakov operators, Filomat, (2015) (In Press).
  24. A. Wafi, N.Rao and D. Rai, Approximation properties by generalized-Baskakov-Kantorovich-Stancu type operators, Appl. Math. Inf. Sci. Lett., 4 (3) (2016), 111-118. https://doi.org/10.18576/amisl/040303
  25. A.Wafi and N. Rao, Szasz-Durremeyer operators based on Dunkl analogue, Com-plex Anal. Oper. Theory, (2017) 1-18. doi:10.1007/s11785-017-0647-7.
  26. A. Wafi and N. Rao, A generalization of Szasz-type operators which preserves constant and quadratic test functions, Cogent Mathematics (2016), 3: 1227023.
  27. S. Varma and F. Tasdelen, Szasz type operators involving Charlier polynomials, Math. Comput. Modeling, 56 (5-6) (2012) 118-122. https://doi.org/10.1016/j.mcm.2011.12.017

Cited by

  1. Szász-Gamma Operators Based on Dunkl Analogue vol.43, pp.1, 2017, https://doi.org/10.1007/s40995-017-0433-4