• Title/Summary/Keyword: Charge dose

Search Result 75, Processing Time 0.023 seconds

Electrical Characteristics of Flat Cesium Antimonide Photocathode Emitters in Panel Devices

  • Jeong, Hyo-Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.5
    • /
    • pp.306-309
    • /
    • 2016
  • The Cs3Sb photocathode was formed by non-vacuum process technology. An in-situ vacuum device was fabricated successively with flat cesium antimonide photocathode emitters fabricated in a process chamber. The electrical properties of the device were characterized. Electron emission from the devices was induced by photoemitted electrons, which were accelerated by an anode electric field that was shielded from the photoemitter surface. The electrical characteristics of the devices were investigated by measuring the anode current as a function of device operation times with respect to applied anode voltages. Planar blue LED light with a 450 nm wavelength was used as an excitation source. The results showed that the cesium antimonide photocathode emitter has the potential of long lifetime with stable electron emission characteristics in panel devices. These features demonstrate that the cesium antimony photocathodes produced by non-vacuum processing technology is suitable for flat cathodes in panel device applications.

5-MeV Proton-irradiation characteristics of AlGaN/GaN - on-Si HEMTs with various Schottky metal gates

  • Cho, Heehyeong;Kim, Hyungtak
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.484-487
    • /
    • 2018
  • 5 MeV proton-irradiation with total dose of $10^{15}/cm^2$ was performed on AlGaN/GaN-on-Si high electron mobility transistors (HEMTs) with various gate metals including Ni, TaN, W, and TiN to investigate the degradation characteristics. The positive shift of pinch-off voltage and the reduction of on-current were observed from irradiated HEMTs regardless of a type of gate materials. Hall and transmission line measurements revealed the reduction of carrier mobility and sheet charge concentration due to displacement damage by proton irradiation. The shift of pinch-off voltage was dependent on Schottky barrier heights of gate metals. Gate leakage and capacitance-voltage characteristics did not show any significant degradation demonstrating the superior radiation hardness of Schottky gate contacts on GaN.

A Study on Operating Lifetime of Cs3Sb Emitters in Panel Device Applications

  • Jeong, Hyo Soo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.3
    • /
    • pp.176-179
    • /
    • 2017
  • Non-vacuum processing technology was used to produce $Cs_3Sb$ photocathodes on substrates and fabricate in-situ panel devices. Electrical properties of these panel devices were characterized by measuring anode current and charge dose as functions of devices operation time. An excitation light source with a 475 nm wavelength was used for photocathodes. Results showed that emission properties of these photocathode emitters depended heavily on the vacuum level of these devices and that $Cs_3Sb$ flat emitters had the potential of operating for a long lifetime with stable electron emission characteristics via re-cesiation process in the panel device. These features make $Cs_3Sb$ photocathodes suitable as flat emitters in panel device applications.

Quality Degradation of Semiconductor Transistors by 1MeV Electron Beam Exposure

  • Lee, Tae-Hoon;Gyuseong Cho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.401-406
    • /
    • 1997
  • This paper presents preliminary results on the degradation of BJTs(Bipolar Junction Transistors) and MOSFETs(Metal Oxide Semiconductor Field Effect Transistors) by 1MeV electron beam. Exposure experimental results show that the change of minority-carrier life time in base region dominates the behavior of BJTs and that the buildup of charges in oxide region can affect the value of threshold voltage for MOSFETs. It was possible to correlate the decrease of the minority-carrier life time of BJTs with irradiation dose, while the shift of MOSFETs' threshold voltage was not only a function of charge buildup in oxide region.

  • PDF

Radiation Damage Effects in $NB^+$ Implanted Sapphire After Annealing

  • Huang, N.K.;Naramoto, H.
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.78-84
    • /
    • 1998
  • Niobium ions of 380 keV energy have been implanted at 300k in sapphire with a dose of $5\times10^{16}\textrm{ions/cm}^2$ and subsequently thermal annealed up to $1100^{\circ}C$ at reducing atmosphere. The behavior of the radiation damage produced by ion implantation followed by annealing is investigated using optical absorption technique and X-ray photoelectron spectroscopy(XPS). It is found that different defects annealed are dependent on the annealing temperature owing to different mechanisms which are proposed on the basis of the optical absorption measurement, and the implanted niobium in sapphire is in different local environments with different charge states after annealing, which are analyzed by XPS measurements.

  • PDF

A Study on Chargin and Discharging Characteristics of Variable Volume with Compressed Air (가변체적내의 압축공기 충진 및 방출특성연구)

  • Kim, Dong-Soo;Kim, Hyoung-Eui;Park, Jae-Bum;Kang, Bo-Sig;Sung, Baek-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.125-131
    • /
    • 1995
  • Pneumatic System has been mainly used as main equipment for actuation and control of fluid force in manufacturing industry. For velocity control of piston, meter-out restriction method is used in many cases. In this systems, meter-out restriction method is adopted for analysing the Dynamic Charging and Discharging Process which is Variable Volume Chamber. Experiments has been conducted for different supply pressure condition. As a experimental result, charge side chamber pressure rises to supply pressure rapidily and discharge side chamber pressure decreases. Also, when the air in the cylinder is discharged, tempdrature of air decreases steeply. Restriction of the Cylinder sometimes freeze and it dose not function. The result will be useful for the analysis of pneumatic system.

  • PDF

The Fabrication and Property Evaluation of Poly-crystalline CdTe based Photon Counting X-ray Sensor (다결정 CdTe 기반의 광계수형 X선 센서 제작 및 특성평가)

  • Kang, Sang Sik;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.7
    • /
    • pp.439-443
    • /
    • 2015
  • An electrical signals of a conventional radiation medical imaging sensor are obtained by charge integration method. In this study, the polycrystalline cadmium telluride(p-CdTe) film was fabricated by a thermal evaporation method for the photon counting sensor development with excellent resolution in low exposure dose. From the fabricated p-CdTe sensor, the physical properties(SEM, XRD) and the electrical properties(leakage current, x-ray sensitivity, SNR) were evaluated. As a result, the leakage current of below $5nA/cm^2$ and $7{\mu}C/cm^2-R$ of the X-ray sensitivity were showed in below $1V/{\mu}m$. In addition, the signal to noise ratio showed the values of above 5000 at operating voltage.

Feasibility study of Hybrid X-ray detecter for Digital X-ray imaging application (디지털 방사선 적용을 위한 Hybrid 방사선 검출기의 Feasibility 연구)

  • Choi, Jang-Yong;Park, Ji-Koon;Lee, Chae-Hun;Lee, Kyu-Hong;Choi, Heung-Kook;Nam, Sang-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.77-80
    • /
    • 2004
  • In this study, the purpose is to verified the feasibility to develope Hybrid x-ray detector in order to resolve problems of direct and indirect x-ray detectors. The properties of X-ray detector depend on absorption of X-ray, charge generation by x-ray photon, leakage current. In this study, CdS was used as photoconductor, and $Y_2O_2S:Tb$ as x-ray phosphor was formed on CdS in order to embody Hybrid structure. And Screen printing was used to form Muli-layer. Characteristics of this specimen were analyzed by using SEM, and XRD. And Photoluminescence spectrum of $Y_2O_2S:Tb$, leakage current, with respect to applied voltages, output charge with respect to applied voltages, and X-ray sensitivity were measured. Also, linearity with respect to dose was measured. Leakage current was similar with direct digital x-ray detector, but sensitivity of the hybrid structure is much better than the single-layer structure.

  • PDF

Coagulation Control of High Turbid Water Samples Using a Streaming Current Control System (유동흐름 전류계를 이용한 정수장 고탁도 유입수 응집 제어 방법에 대한 연구)

  • Nam, Seung-Woo;Jo, Byung-Il;Kim, Won-Kyong;Zoh, Kyung-Duk
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.2
    • /
    • pp.128-135
    • /
    • 2012
  • Objectives: This study was aimed at determining the optimum coagulation dosage in a high turbid kaolin water sample using streaming current detection (SCD) as an alternative to the jar test. Methods: SCD is able to optimize coagulant dosing by titration of negatively charged particles. Kaolin particles were used to mimic highly turbid water ranging from 50 to 600 NTU, and polyaluminum chloride (PAC, 17%) was applied as a titrant and coagulant. The coagulation consisted of rapid stirring (5 min at 140 rpm), reduced stirring (20 min at 70 rpm), and settling (60 min). To confirm the coagulation effect, a jar test was also compared with the SCD titration results. Results: SCD titration of kaolin water samples showed that the dose of PAC increased as the pH rose. However, supernatant turbidity less than 1 NTU after coagulation was not achieved for high turbid water by SCD titration. Instead, a conversion factor was used to calculate the optimum PAC dosage for high turbid water by correlating a jar test result with that from an SCD titration. Using this approach, we were able to successfully achieve less than 1 NTU in treated water. Conclusions: For high turbid water influent in a water treatment plant, particularly during summer, the application of SCD control by applying a conversion factor can be more useful than a jar test due to the rapid calculation of coagulation dosage. Also, the interpolation of converted PAC dose could successfully achieve turbidity in the treated water of less than 1 NTU. This result indicates that an SCD system can be effectively used in a water treatment plant even for high turbid water during the rainy season.

Preparation of Lysine-Coated Magnetic Fe2O3 Nanoparticles and Influence on Viability of A549 Lung Cancer Cells

  • Ma, Yu-Hua;Peng, Hai-Ying;Yang, Rui-Xia;Ni, Fang
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8981-8985
    • /
    • 2014
  • Objective: To explore the effect of lysine-coated oxide magnetic nanoparticles (Lys@MNPs) on viability and apoptosis of A549 lung cancer cells. Methods: Transmission electron microscopy (TEM), vibrating sample magnetometer (VSM) and Zeta potentiometric analyzer were employed to characterize Lys@MNPs. Then Lys@MNPs and lung cancer A549 cells were co-cultured to study the effect of Lys@MNPs on cell viability and apoptosis. The pathway of Lys@MNPs entering A549 cells was detected by TEM and cell imaging by 1.5 T MRI. Results: Lys@MNPs were 10.2 nm in grain diameter, characterized by small size, positive charge, and superparamagnetism. Under low-dose concentration of Lys@MNPs (< $40{\mu}g/mL$), the survival rate of A549 cells was decreased but remained higher than 95% while under high-dose concentration ($100{\mu}g/mL$), the survival ratewas still higher than 80%, which suggested Lys@MNPs had limited influence on the viability of A549 cells, with good biocompatibility and and no induction of apoptosis. Moreover, high affinity for cytomembranes, was demonstrated presenting good imaging effects. Conclusion: Lys@MNPs can be regarded as a good MRI negative contrast agents, with promising prospects in biomedicine.