Browse > Article
http://dx.doi.org/10.4313/TEEM.2016.17.5.306

Electrical Characteristics of Flat Cesium Antimonide Photocathode Emitters in Panel Devices  

Jeong, Hyo-Soo (Department of Electrical Materials Engineering, University of Suwon)
Publication Information
Transactions on Electrical and Electronic Materials / v.17, no.5, 2016 , pp. 306-309 More about this Journal
Abstract
The Cs3Sb photocathode was formed by non-vacuum process technology. An in-situ vacuum device was fabricated successively with flat cesium antimonide photocathode emitters fabricated in a process chamber. The electrical properties of the device were characterized. Electron emission from the devices was induced by photoemitted electrons, which were accelerated by an anode electric field that was shielded from the photoemitter surface. The electrical characteristics of the devices were investigated by measuring the anode current as a function of device operation times with respect to applied anode voltages. Planar blue LED light with a 450 nm wavelength was used as an excitation source. The results showed that the cesium antimonide photocathode emitter has the potential of long lifetime with stable electron emission characteristics in panel devices. These features demonstrate that the cesium antimony photocathodes produced by non-vacuum processing technology is suitable for flat cathodes in panel device applications.
Keywords
Photocathode; Flat emitter; Reflective mode; Current density; Charge dose;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 P. Michelato, Nucl. Instrum. Methods A, 393, 455 (1997). [DOI: http://dx.doi.org/10.1016/S0168-9002(97)00545-7]   DOI
2 J.W.J. Verschuura, B. M. van Oerleb, G. J. Ernsta, D. Biserob, and W.J Witteman, Nucl. Instrum. Methods B, 139, 541 (1998). [DOI: http://dx.doi.org/10.1016/S0168-583X(97)00953-1]   DOI
3 H. S. Jeong, J. Korean Inst. Electr. Electron. Mater. Eng., 27, 312 (2014). [DOI: http://dx.doi.org/10.4313/JKEM.2014.27.5]
4 W. E. Spicer, Phys. Rev. Lett., 11, 243 (1963). [DOI: http://dx.doi.org/10.1103/PhysRevLett.11.243]   DOI
5 A. H. Sommer, Photoemissive Materials (John Wiley & Sons, New York, 1968) p.130.
6 S. Donati, Photodetectors (Prentice Hall PTR, Upper Saddle River, 2000).
7 E. Shefer, Nucl. Instr. and Meth. in Phys. Res. A, 411, 383 (1998). [DOI: http://dx.doi.org/10.1016/S0168-9002(98)00350-7]   DOI
8 A. W. Bett, Appl. Phys., 69, 119 (1999). [DOI: http://dx.doi.org/10.1007/s003390050983]   DOI
9 A. Natarajan, A. T. Kalgatgi, B. M. Baht, and M. Satyam, J. Appl. Phys., 90, 6434 (2001). [DOI: http://dx.doi.org/10.1063/1.1413943]   DOI
10 S. Donati, Photodetectors (Prentice Hall PTR, 2000)
11 S. H. Kong, Nucl. Instrum. Methods A, 272 (1995).
12 H. S. Jeong, Trans. Electr. Electron. Mater., 17, 42 (2016). [DOI: http://dx.doi.org/10.4313/TEEM.2016.17.1.41]   DOI
13 W. E. Spicer, Phys. Rev. Lett., 11, 243 (1963). [DOI: http://dx.doi.org/10.1103/PhysRevLett.11.243]   DOI
14 S. Schubert, E. Muller, X. Liang, T. Vecchione, and J. Smedley, APL. Mater., 1, 032119 (2013). [DOI: http://dx.doi.org/10.1063/1.4821625]   DOI