• Title/Summary/Keyword: Charge density

Search Result 1,127, Processing Time 0.03 seconds

Business Network Characteristics among Chungcheongbukdo-Based Top 300 Enterprises: Focused on Sales Relationship (충청북도 300대 기업 네트워크 특성분석: 판매관계를 중심으로)

  • Kim, Sun-Duck;Hong, Sung-Ho;Lee, Man-Hyung
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.9
    • /
    • pp.437-449
    • /
    • 2014
  • In order to suggest alternative directions for the regional development of Chungcheongbukdo through social network analysis (SNA) methods, this study highlights networking features of Chungcheongbukdo-based top 300 enterprises. In particular, it has paid attention to network relationships among participating enterprises and their basic structure, all of which play pivotal roles in provincial development. Major networking features among Chungcheongbukdo-based top 300 enterprises are dichotomized between structural and positional dimensions. Firstly, in terms of structural approach, this research confirms that both relational density indices and average connectivity levels among key enterprises have been extremely low. Therefore, the exchange networks seem relatively limited. That is, two enterprises could be interconnected after 1.1 stages in average, implying that the most popular types come from direct relationship among participating enterprises. In addition, this research finds that 7 major networks hinged upon 'distributed centralization types' present active information exchange, taking in charge of brokerage roles, all of which have contributed to broader network formation. Nonetheless, as the weight of minor network outweighs that of major network, more active supporting measures should be designed.

Fabrication and Evaluation of NMOS Devices (NMOS 소자의 제작 및 평가)

  • 이종덕
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.16 no.4
    • /
    • pp.36-46
    • /
    • 1979
  • Using N_ Ch silicon gate technology . the capacitors and transistors with various dimenssion were fabricated. Although the applied process was somewhat standard the conditions of ion implantation for the gate were varied by changing the implant energies from 30keV to 60keV for B and from 100 keV to 175keV for P . The doses of the implant also changed from 3 $\times$ 10 /$\textrm{cm}^2$ to 5 $\times$ 10 /$\textrm{cm}^2$ for B and from 4$\times$ 10 /$\textrm{cm}^2$ to 7 $\times$ 10 /$\textrm{cm}^2$ for P . The D. C. parameters such as threshold voltage. substrate doping level, the degree of inversion, capacitance. flat band voltage, depletion layer width, gate oxide thickless, surface states, motile charge density, electron mobility. leakage current were evaluated and also compared with the corresponing theoretical values and / or good numbers for application. The threshold voltages measured using curve tracer and C-V plot gave good agreements with the values calculated from SUPREM II which has been developed by Stanford University process group. The threshold vol tapes with back gate bias were used to calculate the change of the substrate doping level. The measured subthreshold slope enabled the prediction of the degree of inversion The D. C. testing results suggest the realized capacitors and transistors are suited for the memory applications.

  • PDF

Density-based Topology Design Optimization of Piezoelectric Crystal Resonators (압전 수정진동자의 밀도법 기반 위상 최적설계)

  • Ha, Youn Doh;Byun, Taeuk;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.2
    • /
    • pp.63-70
    • /
    • 2014
  • Design sensitivity analysis and topology design optimization for a piezoelectric crystal resonator are developed. The piezoelectric crystal resonator is deformed mechanically when subjected to electric charge on the electrodes, or vice versa. The Mindlin plate theory with higher-order interpolations along thickness direction is employed for analyzing the thickness-shear vibrations of the crystal resonator. Thin electrode plates are masked on the top and bottom layers of the crystal plate in order to enforce to vibrate it or detect electric signals. Although the electrode is very thin, its weight and shape could change the performance of the resonators. Thus, the design variables are the bulk material densities corresponding to the mass of masking electrode plates. An optimization problem is formulated to find the optimal topology of electrodes, maximizing the thickness-shear contribution of strain energy at the desired motion and restricting the allowable volume and area of masking plates. The necessary design gradients for the thickness-shear frequency(eigenvalue) and the corresponding mode shape(eigenvector) are computed very efficiently and accurately using the analytical design sensitivity analysis method using the eigenvector expansion concept. Through some demonstrative numerical examples, the design sensitivity analysis method is verified to be very efficient and accurate by comparing with the finite difference method. It is also observed that the optimal electrode design yields an improved mode shape and thickness-shear energy.

The Fabrication of Poly-Si Solar Cells for Low Cost Power Utillity (저가 지상전력을 위한 다결정 실리콘 태양전지 제작)

  • Kim, S.S.;Lim, D.G.;Shim, K.S.;Lee, J.H.;Kim, H.W.;Yi, J.
    • Solar Energy
    • /
    • v.17 no.4
    • /
    • pp.3-11
    • /
    • 1997
  • Because grain boundaries in polycrystalline silicon act as potential barriers and recombination centers for the photo-generated charge carriers, these defects degrade conversion effiency of solar cell. To reduce these effects of grain boundaries, we investigated various influencing factors such as thermal treatment, various grid pattern, selective wet etching for grain boundaries, buried contact metallization along grain boundaries, grid on metallic thin film. Pretreatment above $900^{\circ}C$ in $N_2$ atmosphere, gettering by $POCl_3$ and Al treatment for back surface field contributed to obtain a high quality poly-Si. To prevent carrier losses at the grain boundaries, we carried out surface treatment using Schimmel etchant. This etchant delineated grain boundaries of $10{\mu}m$ depth as well as surface texturing effect. A metal AI diffusion into grain boundaries on rear side reduced back surface recombination effects at grain boundaries. A combination of fine grid with finger spacing of 0.4mm and buried electrode along grain boundaries improved short circuit current density of solar cell. A ultra-thin Chromium layer of 20nm with transmittance of 80% reduced series resistance. This paper focused on the grain boundary effect for terrestrial applications of solar cells with low cost, large area, and high efficiency.

  • PDF

Sodium Sulfur Battery for Energy Storage System (대용량 에너지 저장시스템을 위한 나트륨 유황전지)

  • Kim, Dul-Sun;Kang, Sungwhan;Kim, Jun-Young;Ahn, Jou-Hyeon;Lee, Chang-Hui;Jung, Keeyoung;Park, Yoon-Cheol;Kim, Goun;Cho, Namung
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.3
    • /
    • pp.111-122
    • /
    • 2013
  • Sodium sulfur (NAS) battery is a high energy storage system (ESS). These days, as the use of renewable green energy like wind energy, solar energy and ocean energy is rapidly increasing, the demand of ESS is increasing and NAS battery is considered to be one of the most promising ESS. Since NAS battery has a high energy density(3 times of lead acid battery), long cycle life and no self-charge and discharge, it is a good candidate for ESS. A NAS battery consists of sulfur as the positive electrode, sodium as the negative electrode and ${\beta}$"-alumina as the electrolyte and a separator simultaneously. Since sulfur is an insulator, carbon felt should be used as conductor with sulfur and so the composition and property of the cathode could largely influence the cell performance and life cycle. Therefore, in this paper, the composition of NAS battery, the property of carbon felt and sodium polysulfides ($Na_2S_x$, intermediates of discharge), and the effects of these factors on cycle performance of cells are described in detail.

Power Enhance Effect on the Hybrid Cell Based on Direct Current Nanogenerator and an Organic Photovoltaic Device

  • Yun, Gyu-Cheol;Sin, Gyeong-Sik;Lee, Geun-Yeong;Lee, Ju-Hyeok;Kim, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.298-298
    • /
    • 2013
  • Finding renewable and clean energy resources is essential research to solve global warming and depletion of fossil fuels in modern society. Recently, complex harvesting of energy from multiple sources is available in our living environments using a single device has become highly desirable, representing a new trend in energy technologies. We report that when simultaneously driving the fusion and composite cells of two or more types, it is possible to make an affect the other cells to obtain a greater synergistic effect. To understand the coupling effect of photovoltaic and piezoelectric device, we fabricate the serially integrated hybrid cell (s-HC) based on organic solar cell (OSC) and piezoelectric nanogenerator (PNG). The size of increased voltage peaks when OSC and PNG are working on is larger than the case when only PNG is working. This voltage difference is the Voc change of OSC, not the voltage change of PNG and current density difference between these two cases is manifested more clearly. When the OSC and PNG are working in s-HC at the same time, piezoelectric potential (VPNG) is generated in ZnO and theoretical total voltage is sum of voltage of an OSC (VOSC) and VPNG. However, electrons from OSC are influenced by piezoelectric potential in ZnO and current loss of OSC in whole circuit decreases. As a result, VOSC increases temporarily. Current shows the similar behavior. PNG acts a resistance in the whole circuit and current loss occurs when the electrons from OSC pass through the PNG. But piezoelectric potential recover current loss and decrease the resistance of PNG. Our PNG can maintain piezoelectric potential when the strain is held owing to the LDH layer while general PNG cannot maintain piezoelectric potential. During the section that strain is held, voltage enhancement effect is maintained and same effect appeared even turn off the light. Actually at this time, electrons in ZnO nanosheets move to LDH and trapped by the positive charges in this layer. After this strain is held, piezoelectric potential of ZnO nanosheets is disappeared but potential difference which is developed by negative charge dominant LDH layer is remained. This potential acts similar role like piezoelectric potential in ZnO. Electrons from the OSC also are influenced by this potential and the more current flows.

  • PDF

Anomalous Luminescence and Emission Quenching Behaviors of Tris(2,2$^\prime$-bipyridine)Ruthenium(Ⅱ) in Poly(methacrylic acid) Solutions$^1$

  • Park, Joon-Woo;Paik, Young-Hee
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.2
    • /
    • pp.137-142
    • /
    • 1986
  • The luminescence spectra of $Ru(bpy)_3^{2+}$ in poly(methacrylic acid) (PMA) solutions varied sensitively with pH. At pH < 5.5, the emission intensity increased with pH up to 4 times, while it decreased with pH beyond the pH. The enhanced emission intensity was accompanied by blue-shift of the emission maxima as much as 15 nm. The enhancement of emission intensity was attributed to the restricted rotational mobility of ligand of the cation bound to densely coiled PMA molecules at pH < 5.5. The sharp decrease in emission intensity with increasing pH near pH 5.6 was accounted for conformational transition of the polymer to more extended structure, which was also revealed in viscosity measurement. The enhancement of emission intensity became higher as NaCl concentration of the solution increased. The binding constant of $Ru(bpy)_3^{2+}$ with two carboxylate groups of PMA was calculated as $2{\times}10^5\;M^{-1}$ in 0.1 M NaCl at pH 5.2. The pH dependence of luminescence quenching rate of $Ru(bpy)_3^{2+}$ by $Cu^{++}$ also showed maximum near pH 5, and the rate was more than $10^3$ times higher than that in water, whereas the maximum enhancement of quenching rate (about 20 times) in poly(acrylic acid) (PAA) solution occurred at pH 4.5. On the other hand, the pH dependence for neutral water soluble nitrobenzene (NB) exhibited opposite trend to that of $Cu^{++}$. The quenching constant vs pH curve for $MV^{++}$ was composite of those for $Cu^{++}$ and NB. The anomalous high quenching rate for $Cu^{++}$ in PMA solution at pH < 5.5 was attributed to the binding of $Ru(bpy)_3^{2+}$ and $Cu^{++}$ to the same region of PMA, when it conforms densely coiled structure in the pH range. The observation of mininium quenching rate for NB near pH 5.5 indicated that the $Ru(bpy)_3^{2+}$ bound to the densely coiled PMA is not accessible by NB, which is in bulk water phase. The composite nature of the pH dependence of quenching rate for $MV^{++}$ in PMA solution was attributed to the smaller binding affinity of the cation to PMA, compared to that of $Cu^{++}$. The sharp, cooperative conformational transition with pH observed in PMA was not revealed in PAA. But, the pH dependence of quenching rates in this polymer reflected increased charge density and, thus, binding of cations to the polymer, and expansion of the polymer chain with pH.

Performance Evaluation of Aqueous Redox Flow Battery using Quinone Redox Couple Dissolved in Ammonium Chloride Electrolyte (염화암모늄 전해질에 포함된 퀴논 레독스 활물질 조합을 이용한 수계 레독스 흐름 전지 성능 평가)

  • Lee, Wonmi;Chung, Kun Yong;Kwon, Yongchai
    • Korean Chemical Engineering Research
    • /
    • v.57 no.2
    • /
    • pp.239-243
    • /
    • 2019
  • In this study, anthraquinone-2,7-disulfonic acid (2,7-AQDS) is used as negative active material and Tiron is used as positive active material for aqueous redox flow battery (RFB). In previous results that used the 2,7-AQDS and Tiron, sulfuric acid ($H_2SO_4$) was a supporting electrolyte. However, in this study, ammonium chloride ($NH_4Cl$) is suggested as the electrolyte for the first time. By changing the supporting electrolyte from $H_2SO_4$ to $NH_4Cl$, the cell voltage of RFB is improved from 0.76 V to 1.01 V. To investigate the effect of $NH_4Cl$ supporting electrolyte of the performance of RFB, the full-cell tests of RFB using 2,7-AQDS and Tiron that are dissolved in $NH_4Cl$ supporting electrolyte are carried out, while cut-off voltage range is a main parameter to determine their performance. When the cut-off voltage range is 0.2~1.6 V, the hydrogen evolution occurs during charging step. To address the side reaction effect, the cut-off voltage range is changed to 0.2~1.2 V. When the revised cut-off voltage range is used and the current density of $40mA/cm^2$ is applied, hydrogen evolution is not observed and the optimal RFB shows the charge efficiency of 99% and discharge capacity of 3.3 Ah/L at 10cycle.

Nanolayered CuWO4 Decoration on Fluorine-Doped SnO2 Inverse Opals for Solar Water Oxidation

  • Cho, Ha Eun;Yun, Gun;Arunachalam, Maheswari;Ahn, Kwang-Soon;Kim, Chung Soo;Lim, Dong-Ha;Kang, Soon Hyung
    • Journal of Electrochemical Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.282-291
    • /
    • 2018
  • The pristine fluorine-doped $SnO_2$ (abbreviated as FTO) inverse opal (IO) was developed using a 410 nm polystyrene bead template. The nanolayered copper tungsten oxide ($CuWO_4$) was decorated on the FTO IO film using a facile electrochemical deposition, subsequently followed by annealing at $500^{\circ}C$ for 90 min. The morphologies, crystalline structure, optical properties and photoelectrochemical characteristics of the FTO and $CuWO_4$-decorated FTO (briefly denoted as $FTO/CuWO_4$) IO film were investigated by field emission scanning electron microscopy, X-ray diffraction, UV-vis spectroscopy and electrochemical impedance spectroscopy, showing FTO IO in the hexagonally closed-pack arrangement with a pore diameter and wall thickness of about 300 nm and 20 nm, respectively. Above this film, the $CuWO_4$ was electrodeposited by controlling the cycling number in cyclic voltammetry, suggesting that the $CuWO_4$ formed during 4 cycles (abbreviated as $CuWO_4$(4 cycles)) on FTO IO film exhibited partial distribution of $CuWO_4$ nanoparticles. Additional distribution of $CuWO_4$ nanoparticles was observed in the case of $FTO/CuWO_4$(8 cycles) IO film. The $CuWO_4$ layer exhibits triclinic structure with an indirect band gap of approximately 2.5 eV and shows the enhanced visible light absorption. The photoelectrochemical (PEC) behavior was evaluated in the 0.5 M $Na_2SO_4$ solution under solar illumination, suggesting that the $FTO/CuWO_4$(4 cycles) IO films exhibit a photocurrent density ($J_{sc}$) of $0.42mA/cm^2$ at 1.23 V vs. reversible hydrogen electrode (RHE, denoted as $V_{RHE}$), while the FTO IO and $FTO/CuWO_4$(8 cycles) IO films exhibited a $J_{sc}$ of 0.14 and $0.24mA/cm^2$ at $1.23V_{RHE}$, respectively. This difference can be explained by the increased visible light absorption by the $CuWO_4$ layer and the favorable charge separation/transfer event in the cascading band alignment between FTO and $CuWO_4$ layer, enhancing the overall PEC performance.

Effect of O2 Plasma Treatment on Electrochemical Performance of Supercapacitors Fabricated with Polymer Electrolyte Membrane (고분자 전해질막으로 제조한 슈퍼커패시터의 전기화학적 특성에 대한 산소 플라즈마 처리 영향)

  • Moon, Seung Jae;Kim, Young Jun;Kang, Du Ru;Lee, So Youn;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.32 no.1
    • /
    • pp.43-49
    • /
    • 2022
  • Solid-state supercapacitors with high safety and robust mechanical properties are attracting global attention as next-generation energy storage devices. As an electrode of a supercapacitor, an economical carbon-based electrode is widely used. However, when an aqueous electrolyte is introduced, the charge transfer resistance increases because the interfacial contact between the hydrophobic electrode surface and aqueous electrolyte is not good. In this regard, we propose a method to obtain higher electrochemical performance based on improved interfacial properties by treating the electrode surface with oxygen plasma. The surface hydrophilization induced by the enriched oxygen functionalities was confirmed by the contact angle measurement. As a result, the degree of hydrophilization was easily adjusted by controlling the power and duration of the oxygen plasma treatment. As the electrolyte of the supercapacitor, PVA/H3PO4, which is a typical solid-state aqueous electrolyte, was used. Free-standing membranes of PVA/H3PO4 electrolyte were prepared and then pressed onto the electrode. The optimal condition was to perform oxygen plasma treatment for 5 seconds with a low power of 15 W, and the energy density of the supercapacitor increased by about 8%.