• Title/Summary/Keyword: Chaotic systems

Search Result 311, Processing Time 0.027 seconds

PRINCIPLES FOR A CIPHER SYSTEM BASED ON CHAOTIC AND CHAOTIC FUZZY TOOLS

  • Teodorescu, H.N.;Yamakawa, T.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.869-872
    • /
    • 1993
  • The chaotic fuzzy logic systems behave in a more complex way than crisp chaotic systems, and they can show some advantages in complex applications. Such an application is introduced in this paper, namely in scrambling and ciphering the signals.

  • PDF

Chaos in PID Controlled Nonlinear Systems

  • Ablay, Gunyaz
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1843-1850
    • /
    • 2015
  • Controlling nonlinear systems with linear feedback control methods can lead to chaotic behaviors. Order increase in system dynamics due to integral control and control parameter variations in PID controlled nonlinear systems are studied for possible chaos regions in the closed-loop system dynamics. The Lur’e form of the feedback systems are analyzed with Routh’s stability criterion and describing function analysis for chaos prediction. Several novel chaotic systems are generated from second-order nonlinear systems including the simplest continuous-time chaotic system. Analytical and numerical results are provided to verify the existence of the chaotic dynamics.

Application of a TDOF controller to chaotic dynamical systems

  • Kameda, T.;Aihara, K.;Hori, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1549-1552
    • /
    • 1991
  • We apply a TDOF ( Two Degrees of Freedom) robust controller to chaotic systems. We show that the TDOF robust controller is effective not only for rejection of chaotic disturbance but also for control of a chaotic plant.

  • PDF

Radial Basis Function Network Based Predictive Control of Chaotic Nonlinear Systems

  • Choi, Yoon-Ho;Kim, Se-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.13 no.5
    • /
    • pp.606-613
    • /
    • 2003
  • As a technical method for controlling chaotic dynamics, this paper presents a predictive control for chaotic systems based on radial basis function networks(RBFNs). To control the chaotic systems, we employ an on-line identification unit and a nonlinear feedback controller, where the RBFN identifier is based on a suitable NARMA real-time modeling method and the controller is predictive control scheme. In our design method, the identifier and controller are most conveniently implemented using a gradient-descent procedure that represents a generalization of the least mean square(LMS) algorithm. Also, we introduce a projection matrix to determine the control input, which decreases the control performance function very rapidly. And the effectiveness and feasibility of the proposed control method is demonstrated with application to the continuous-time and discrete-time chaotic nonlinear system.

Direct adaptive control of chaotic nonlinear systems using a radial basis function network (방사 기저 함수 회로망을 이용한 혼돈 비선형 시스템의 직접 적응 제어)

  • 김근범;박광성;최윤호;박진배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.219-222
    • /
    • 1997
  • Due to the unpredictability and irregularity, the behaviors of chaotic systems are considered as undesirable phenomena to be avoided or controlled. Thus in this paper, to control systems showing chaotic behaviors, a direct adaptive control method using a radial basis function network (RBFN) as an excellent alternative of multi-layered feed-forward networks is presented. Compared with an indirect scheme, a direct one does not need the estimation of the controlled process and gives fast control effects. Through simulations on the two representative continuous-time chaotic systems, Duffing and Lorenz systems, validity of the proposed control scheme is shown.

  • PDF

Dimension Analysis of Chaotic Time Series Using Self Generating Neuro Fuzzy Model

  • Katayama, Ryu;Kuwata, Kaihei;Kajitani, Yuji;Watanabe, Masahide;Nishida, Yukiteru
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.857-860
    • /
    • 1993
  • In this paper, we apply the self generating neuro fuzzy model (SGNFM) to the dimension analysis of the chaotic time series. Firstly, we formulate a nonlinear time series identification problem with nonlinear autoregressive (NARMAX) model. Secondly, we propose an identification algorithm using SGNFM. We apply this method to the estimation of embedding dimension for chaotic time series, since the embedding dimension plays an essential role for the identification and the prediction of chaotic time series. In this estimation method, identification problems with gradually increasing embedding dimension are solved, and the identified result is used for computing correlation coefficients between the predicted time series and the observed one. We apply this method to the dimension estimation of a chaotic pulsation in a finger's capillary vessels.

  • PDF

Feedback control of chaotic systems (혼돈시스템의 되먹임 제어)

  • ;;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1234-1239
    • /
    • 1993
  • We study how to design conventional feedback controllers to drive chaotic trajectories of the well-known systems to their equilibrium points or any of their inherent periodic orbits. The well-known chaotic systems are Heon map and Duffing's equation, which are used as illustrative examples. The proposed feedback controller forces the chaotic trajectory to the stable manifold as OGY method does. Simulation results are presented to show the effectiveness of the proposed design method.

  • PDF

A study on the intelligent control of chaotic nonlinear systems using neural networks (신경 회로망을 이용한 혼돈 비선형 시스템의 지능 제어에 관한 연구)

  • 오기훈;주진만;박진배;최윤호
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.453-456
    • /
    • 1996
  • In this paper, the direct adaptive control using neural networks is presented for the control of chaotic nonlinear systems. The direct adaptive control method has an advantage that the additional system identification procedure is not necessary. In order to evaluate the performance of our controller design method, two direct adaptive control methods are applied to a Duffing's equation and a Lorenz equation which are continuous-time chaotic systems. Our simulation results show the effectiveness of the controllers.

  • PDF

Design of Predictive Controller for Chaotic Nonlinear Systems using Fuzzy Neural Networks (퍼지 신경 회로망을 이용한 혼돈 비선형 시스템의 예측 제어기 설계)

  • Choi, Jong-Tae;Park, Jin-Bae;Choi, Yoon-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.621-623
    • /
    • 2000
  • In this paper, the effective design method of the predictive controller using fuzzy neural networks(FNNs) is presented for the Intelligent control of chaotic nonlinear systems. In our design method of controller, predictor parameters are tuned by the error value between the actual output of a chaotic nonlinear system and that of a fuzzy neural network model. And the parameters of predictive controller using fuzzy neural network are tuned by the gradient descent method which uses control error value between the actual output of a chaotic nonlinear system and the reference signal. In order to evaluate the performance of our controller, it is applied to the Duffing system which are the representative continuous-time chaotic nonlinear systems and the Henon system which are representative discrete-time chaotic nonlinear systems.

  • PDF

Wavelet Neural Network Based Indirect Adaptive Control of Chaotic Nonlinear Systems

  • Choi, Yoon-Ho;Choi, Jong-Tae;Park, Jin-Bae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.1
    • /
    • pp.118-124
    • /
    • 2004
  • In this paper, we present a indirect adaptive control method using a wavelet neural network (WNN) for the control of chaotic nonlinear systems without precise mathematical models. The proposed indirect adaptive control method includes the off-line identification and on-line control procedure for chaotic nonlinear systems. In the off-line identification procedure, the WNN based identification model identifies the chaotic nonlinear system by using the serial-parallel identification structure and is trained by the gradient-descent method. And, in the on-line control procedure, a WNN controller is designed by using the off-line identification model and is trained by the error back-propagation algorithm. Finally, the effectiveness and feasibility of the proposed control method is demonstrated with applications to the chaotic nonlinear systems.