Browse > Article
http://dx.doi.org/10.5370/JEET.2015.10.4.1843

Chaos in PID Controlled Nonlinear Systems  

Ablay, Gunyaz (Dept. of Electrical and Electronic Engineering, Abdullah Gul University)
Publication Information
Journal of Electrical Engineering and Technology / v.10, no.4, 2015 , pp. 1843-1850 More about this Journal
Abstract
Controlling nonlinear systems with linear feedback control methods can lead to chaotic behaviors. Order increase in system dynamics due to integral control and control parameter variations in PID controlled nonlinear systems are studied for possible chaos regions in the closed-loop system dynamics. The Lur’e form of the feedback systems are analyzed with Routh’s stability criterion and describing function analysis for chaos prediction. Several novel chaotic systems are generated from second-order nonlinear systems including the simplest continuous-time chaotic system. Analytical and numerical results are provided to verify the existence of the chaotic dynamics.
Keywords
Chaos; Feedback systems; Linear control; Nonlinear systems; Chaotification; PID control;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Fu and J. Heidel, “Non-chaotic behaviour in three-dimensional quadratic systems,” Nonlinearity, vol. 12, no. 3, p. 739, May 1999.   DOI   ScienceOn
2 J. C. Sprott, “Simple chaotic systems and circuits,” American Journal of Physics, vol. 68, no. 8, pp. 758-763, 2000.   DOI   ScienceOn
3 B. Munmuangsaen and B. Srisuchinwong, “A new five-term simple chaotic attractor,” Physics Letters A, vol. 373, no. 44, pp. 4038-4043, Oct. 2009.   DOI   ScienceOn
4 P. Frederickson, J. L. Kaplan, E. D. Yorke, and J. A. Yorke, “The liapunov dimension of strange attractors,” Journal of Differential Equations, vol. 49, no. 2, pp. 185-207, Aug. 1983.   DOI
5 A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, “Determining Lyapunov exponents from a time series,” Physica D: Nonlinear Phenomena, vol. 16, no. 3, pp. 285-317, Jul. 1985.   DOI   ScienceOn
6 R. Frigg, “In what sense is the Kolmogorov-Sinai Entropy a measure for chaotic behaviour? Bridging the gap between dynamical systems theory and communication theory,” British J. for the Philosophy of Science, vol. 55, no. 3, pp. 411-434, 2004.   DOI   ScienceOn
7 R. Genesio and A. Tesi, “Chaos prediction in nonlinear feedback systems,” Control Theory and Applications, IEE Proceedings D, vol. 138, no. 4, pp. 313-320, Jul. 1991.   DOI
8 L. dos S. Coelho and R. B. Grebogi, “Chaotic synchronization using PID control combined with population based incremental learning algorithm,” Expert Systems with Applications, vol. 37, no. 7, pp. 5347-5352, Jul. 2010.   DOI   ScienceOn
9 C.-F. Hsu, J.-Z. Tsai, and C.-J. Chiu, “Chaos synchronization of nonlinear gyros using self-learning PID control approach,” Applied Soft Computing, vol. 12, no. 1, pp. 430-439, Jan. 2012.   DOI   ScienceOn
10 D. Atherton, An Introduction to Nonlinearity in Control Systems. Bookboon, 2011.
11 R. Genesio and A. Tesi, “Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems,” Automatica, vol. 28, no. 3, pp. 531-548, May 1992.   DOI   ScienceOn
12 J. Guckenheimer and P. Holmes, Nonlinear oscillations, dynamical systems, and bifurcation of vector fields. New York: Springer-Verlag, 1983.
13 D. V. Turaev and L. P. Shilnikov, “An example of a wild strange attractor,” Sbornik Mathematics, vol. 189, no. 2, pp. 291-314, 1998.   DOI   ScienceOn
14 L.P. Shilnikov, “A case of the existence of a denumerable set of periodic motions,” Sov. Math. Dokl., vol. 6, pp. 163-166, 1965.
15 C. P. Silva, “Shil’nikov’s theorem-a tutorial,” IEEE Trans Circuits and Systems I: Fundamental Theory and Applications, vol. 40, no. 10, pp. 675-682, 1993.   DOI   ScienceOn
16 B. R. Hunt, The Theory of Chaotic Attractors. Springer, 2004.
17 K. Starkov and G. Chen, “Chaotification of poly-nomial continuous-time systems and rational normal forms,” Chaos, Solitons & Fractals, vol. 22, no. 4, pp. 849-856, Nov. 2004.   DOI   ScienceOn
18 Y. Li, W. K. S. Tang, and G. Chen, “Hyperchaos evolved from the generalized Lorenz equation,” International Journal of Circuit Theory and Applications, vol. 33, no. 4, pp. 235 - 251, 2005.   DOI   ScienceOn
19 D. O. T. Fossi and P. Woafo, “Generation of complex phenomena in a simple electromechanical system using the feedback control,” Communications in Nonlinear Science and Numerical Simulation, vol. 18, no. 1, pp. 209-218, Jan. 2013.   DOI   ScienceOn
20 J. Zhou, D. Xu, J. Zhang, and C. Liu, “Spectrum optimization-based chaotification using time-delay feedback control,” Chaos, Solitons & Fractals, vol. 45, no. 6, pp. 815-824, Jun. 2012.   DOI   ScienceOn
21 S. Yu and G. Chen, “Anti-control of continuous-time dynamical systems,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 6, pp. 2617-2627, Jun. 2012.   DOI   ScienceOn
22 K. J. Åström and T. Hägglund, Advanced PID Control. ISA, 2006.
23 S. Das, A. Acharya, and I. Pan, “Simulation studies on the design of optimum PID controllers to suppress chaotic oscillations in a family of Lorenz-like multi-wing attractors,” Mathematics and Computers in Simulation, vol. 100, pp. 72-87, 2014.   DOI   ScienceOn
24 A. Alfi, “Chaos suppression on a class of uncertain nonlinear chaotic systems using an optimal H∞ adaptive PID controller,” Chaos, Solitons & Fractals, vol. 45, no. 3, pp. 351-357, Mar. 2012.   DOI   ScienceOn
25 D. Davendra, I. Zelinka, and R. Senkerik, “Chaos driven evolutionary algorithms for the task of PID control,” Computers & Mathematics with Applications, vol. 60, no. 4, pp. 1088-1104, 2010.   DOI   ScienceOn
26 H.-K. Chen and C.-I. Lee, “Anti-control of chaos in rigid body motion,” Chaos, Solitons & Fractals, vol. 21, no. 4, pp. 957-965, Aug. 2004.   DOI   ScienceOn
27 Z.-M. Ge, C.-M. Chang, and Y.-S. Chen, “Anti-control of chaos of single time scale brushless dc motors and chaos synchronization of different order systems,” Chaos, Solitons & Fractals, vol. 27, no. 5, pp. 1298-1315, Mar. 2006.   DOI   ScienceOn
28 S. Şahin and C. Guzelis, “Chaotification of Real Systems by Dynamic State Feedback,” IEEE Antennas and Propagation Magazine, vol. 52, no. 6, pp. 222-233, Dec. 2010.
29 Q. Xie, Z. Han, and W. Zhang, “Chaotification via system immersion,” Journal of Computational and Applied Mathematics, vol. 236, no. 7, pp. 1775-1782, Jan. 2012.   DOI   ScienceOn
30 X. F. Wang, “Generating Chaos in Continuous-Time Systems via Feedback Control,” in Chaos Control, G. Chen and X. Yu, Eds. Springer Berlin Heidelberg, 2003, pp. 179-204.
31 M. U. Akhmet and M. O. Fen, “Replication of chaos,” Comm. in Nonlinear Science and Numerical Simulation, vol. 18, no. 10, pp. 2626-2666, 2013.   DOI   ScienceOn
32 S. Raiesdana and S. M. H. Goplayegani, “Study on chaos anti-control for hippocampal models of epilepsy,” Neurocomputing, vol. 111, pp. 54-69, Jul. 2013.   DOI   ScienceOn
33 P. Saha, S. Banerjee, and A. R. Chowdhury, “On the study of control and anti-control in magneto-convection,” Physics Letters A, vol. 306, no. 4, pp. 211-226, Jan. 2003.   DOI   ScienceOn
34 J. Moreno-Valenzuela, “Adaptive anti control of chaos for robot manipulators with experimental evaluations,” Comm. in Nonlinear Science and Numerical Simulation, vol. 18, no. 1, pp. 1-11, 2013.   DOI   ScienceOn
35 G. Hu, “Generating hyperchaotic attractors with three positive lyapunov exponents via state feedback control,” International Journal of Bifurcation and Chaos, vol. 19, no. 02, pp. 651-660, Feb. 2009.   DOI   ScienceOn
36 Z. Li, J.-B. Park, and Y.-H. Joo, “Chaotifying continuous-time TS fuzzy systems via discretization,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 48, no. 10, pp. 1237-1243, Oct. 2001.   DOI   ScienceOn
37 S. Wiggins, Introduction to applied nonlinear dynamical systems and chaos. New York: Springer, 2003.
38 G. Chen and Y. Shi, “Introduction to anti-control of discrete chaos: theory and applications,” Philos Trans A Math Phys Eng Sci, vol. 364, no. 1846, pp. 2433-2447, Sep. 2006.   DOI   ScienceOn
39 Y. Shi and G. Chen, “Chaotification of discrete dynamical systems governed by continuous maps,” International Journal of Bifurcation and Chaos, vol. 15, no. 02, pp. 547-555, Feb. 2005.   DOI   ScienceOn
40 S. Codreanu, “Desynchronization and chaotification of nonlinear dynamical systems,” Chaos, Solitons & Fractals, vol. 13, no. 4, pp. 839-843, Mar. 2002.   DOI   ScienceOn
41 J. Zhang, D. Xu, J. Zhou, and Y. Li, “Chaotification of vibration isolation floating raft system via non-linear time-delay feedback control,” Chaos, Solitons & Fractals, vol. 45, no. 9-10, pp. 1255-1265, Sep. 2012.   DOI   ScienceOn
42 A. S. Kuznetsov and S. P. Kuznetsov, “Parametric generation of robust chaos with time-delayed feed-back and modulated pump source,” Comm. in Non-linear Science and Numerical Simulation, vol. 18, no. 3, pp. 728-734, 2013.   DOI   ScienceOn
43 S. Yu and G. Chen, “Chaotifying continuous-time nonlinear autonomous systems,” Int. Journal of Bifurcation and Chaos, vol. 22, no. 09, p. 12, 2012.
44 Y. Lei, W. Xu, Y. Xu, and T. Fang, “Chaos control by harmonic excitation with proper random phase,” Chaos, Solitons & Fractals, vol. 21, no. 5, pp. 1175-1181, Sep. 2004.   DOI   ScienceOn
45 R. Li, W. Xu, and S. Li, “Chaos controlling of extended nonlinear Liénard system based on the Melnikov theory,” Applied Mathematics and Computation, vol. 178, no. 2, pp. 405-414, 2006.   DOI   ScienceOn
46 S. Zhou, X. Lin, and H. Li, “Chaotic synchronization of a fractional-order system based on washout filter control,” Comm. in Nonlinear Science and Numerical Simulation, vol. 16, no. 3, pp. 1533-1540, 2011.   DOI   ScienceOn
47 Y. Braiman and I. Goldhirsch, “Taming chaotic dynamics with weak periodic perturbations,” Phys. Rev. Lett., vol. 66, no. 20, pp. 2545-2548, 1991.   DOI   ScienceOn
48 S. Fahy and D. R. Hamann, “Transition from chaotic to nonchaotic behavior in randomly driven systems,” Phys. Rev. Lett., vol. 69, no. 5, pp. 761-764, 1992.   DOI   ScienceOn
49 G. Ablay, “Sliding mode control of uncertain unified chaotic systems,” Nonlinear Analysis: Hybrid Systems, vol. 3, no. 4, pp. 531-535, 2009.   DOI   ScienceOn
50 X. F. Wang and G. Chen, “On feedback anticontrol of discrete chaos,” International Journal of Bifurcation and Chaos, vol. 09, no. 07, pp. 1435-1441, Jul. 1999.   DOI
51 K. Pyragas, “Continuous control of chaos by self-controlling feedback,” Physics Letters A, vol. 170, no. 6, pp. 421-428, Nov. 1992.   DOI   ScienceOn
52 A. Tesi, E. H. Abed, R. Genesio, and H. O. Wang, “Harmonic balance analysis of period-doubling bifurcations with implications for control of nonlinear dynamics,” Automatica, vol. 32, no. 9, pp. 1255-1271, Sep. 1996.   DOI   ScienceOn
53 E. Ott, C. Grebogi, and J. A. Yorke, “Controlling chaos,” Physical Review Letters, vol. 64, no. 11, pp. 1196-1199, 1990.   DOI   ScienceOn
54 K. Pyragas, “Delayed feedback control of chaos,” Philos Trans Roy Soc A, vol. 364, pp. 2309-2334, 2006.   DOI   ScienceOn
55 G. Chen, “Chaos, Bifurcations, and Their Control,” in Wiley Encyclopedia of Electrical and Electronics Engineering, John Wiley & Sons, Inc., 2001.
56 J. Lü, G. Chen, and D. Cheng, “A new chaotic system and beyond: The generalized Lorenz-like system,” Int. J. Bifurcation Chaos, vol. 14, no. 05, pp. 1507-1537, May 2004.   DOI   ScienceOn