• Title/Summary/Keyword: Chaos analysis

Search Result 249, Processing Time 0.025 seconds

Bifurcation Analysis of Nonlinear Oscillations of Suspended Cables with 2-to-1 Internal Resonance (2:1 내부공진을 갖는 케이블의 비선형 진동의 분기해석)

  • 장서일
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1144-1149
    • /
    • 1998
  • A two degree-of-freedom model of suspended cables is studied for forced resonant response. The method of averaging is used to obtain first-order approximations to the response of the system. A bifurcation analysis of the averaged system is performed in the case of 2-to-1 internal resonance. Nonlinear coupled-mode motions are found to bifurcate from single-mode responses and further bifurcate to limit cycle motions via Hopf bifurcations. The limit cycle solutions undergo period doubling bifurcations to chaos.

  • PDF

Chaotic Rocking Vibration of a Rigid Block with Sliding Motion Under Two-Dimensional Harmonic Excitation

  • Jeong, Man-Yong;Kim, Jeong-Ho;Yang, In-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1040-1053
    • /
    • 2002
  • This research deals with the influence of nonlinearities associated with impact and sliding upon the rocking behavior of a rigid block, which is subjected to two-dimensional horizontal and vertical excitation. Nonlinearities in the vibration were found to depend strongly on the effect of the impact between the block and the base, which involves an abrupt reduction in the system's kinetic energy. In particular, when sliding occurs, the rocking behavior is substantially changed. Response analysis using a non-dimensional rocking equation was carried out for a variety of excitation levels and excitation frequencies. The chaos responses were observed over a wide response region, particularly, in the cases of high vertical displacement and violent sliding motion, and the chaos characteristics appear in the time histories, Poincare maps, power spectra and Lyapunov exponents of the rocking responses. The complex behavior of chaotic response, in phase space, is illustrated by the Poincare map. The distribution of the rocking response is described by bifurcation diagrams and the effects of sliding motion are examined through the several rocking response examples.

The Prediction of Chaos Time Series Utilizing Inclined Vector (기울기백터를 이용한 카오스 시계열에 대한 예측)

  • Weon, Sek-Jun
    • The KIPS Transactions:PartB
    • /
    • v.9B no.4
    • /
    • pp.421-428
    • /
    • 2002
  • The local prediction method utilizing embedding vector loses the prediction power when the parameter r estimation is not exact for predicting the chaos time series induced from the high order differential equation. In spite of the fact that there have been a lot of suggestions regarding how to estimate the delay time ($\tau$), no specific method is proposed to apply to any time series. The inclinded linear model, which utilizes inclinded netter, yields satisfying degree of prediction power without estimating exact delay time ($\tau$). The usefulness of this approach has been indicated not only theoretically but also in practical situation when the method w8s applied to economical time series analysis.

Nursing students' experiences in virtual simulation practice (간호대학생의 가상 시뮬레이션 실습 경험)

  • Kim, Yoonjung;Kim, Won Jeong;Min, Hye young
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.26 no.2
    • /
    • pp.198-207
    • /
    • 2020
  • Purpose: The purpose of this study was to explore the meaning of nursing students' experiences in virtual simulation practice. Methods: The participants were six nursing students who have experience in a virtual simulation. Data were collected from August to September 2019 through a focus group interview. Giorgi's phenomenological method was used for analysis. Results: The study results revealed 3 constituents and 6 sub-constituents that are essential for nursing student's experiences in a virtual simulation. The three constituents were: "Chaos in the virtual reality", "The process of adjusting to chaos", and "Becoming an independent nurse in a safe virtual reality". Conclusion: Based on the results of this study, the following suggestions are made. Results suggest the development of virtual simulations in Korean, the use of simulations as a group activity first, and the use of simulation between lecture and practice or in the regular curriculum. The results of the study can be used as primary data for providing virtual simulation in nursing education.

Analysis of Dynamical State Transition and Effects of Chaotic Signal in Continuous-Time Cyclic Neural Network (리미트사이클을 발생하는 연속시간 모델 순환결합형 신경회로망에서 카오스 신호의 영향)

  • Park Cheol-Young
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.4
    • /
    • pp.396-401
    • /
    • 2006
  • It is well-known that a neural network with cyclic connections generates plural limit cycles, thus, being used as a memory system for storing large number of dynamic information. In this paper, a continuous-time cyclic connection neural network was built so that each neuron is connected only to its nearest neurons with binary synaptic weights of ${\pm}1$. The type and the number of limit cycles generated by such network has also been demonstrated through simulation. In particular, the effect of chaos signal for transition between limit cycles has been tested. Furthermore, it is evaluated whether the chaotic noise is more effective than random noise in the process of the dynamical neural networks.

A Possible Application of the PD Detection Technique Using Electro-Optic Pockels Cell With Nonlinear Characteristic Analysis on the PD signals

  • Kang, Won-Jong;Lim, Yun-Sok;Chang, Young-Moo;Koo, Ja-Yoon
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.11C no.2
    • /
    • pp.6-11
    • /
    • 2001
  • Abstract- In this paper, a new Partial Discharge (PD) detection using Pockels cell was proposed and considerable apparent chaotic characteristics were discussed. For this purpose, PD was generated from needle-plane electrode in air and detecte by optical measuring system using Pockels cell, based on Mach-Zehner interferometer, consisting of He-Ne laser, single mode optical fiber, 50/50 beam splitter and photo detector. In addition, the presence of chaos of the PD signals has been investigated by examining their means of qualitative and quantitative information. For the former, return map and 3-dimensional strange attractor have been drawn in order to investigate the presence of chaotic characteristics relevant to PD signals, detected through CT and Peckels sensor respectively, in the normalized time series. The presence of strange attractor indicates the existence of fractal structures in it's phase space. For the latter, several dimension values of strange attractor were verified sequentially. Throughout this paper, it is likely that the chaotic characteristics regarding the PD signals under air are verified.

A Study on the Convergence Characteristics Analysis of Chaotic Dynamic Neuron (동적 카오틱 뉴런의 수렴 특성에 관한 연구)

  • Won-Woo Park
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.5 no.1
    • /
    • pp.32-39
    • /
    • 2004
  • Biological neurons generally have chaotic characteristics for permanent or transient period. The effects of chaotic response of biological neuron have not yet been verified by using analytical methods. Even though the transient chaos of neuron could be beneficial to overcoming the local minimum problem, the permanent chaotic response gives adverse effect on optimization problems in general. To solve optimization problems, which are needed in almost all neural network applications such as pattern recognition, identification or prediction, and control, the neuron should have one stable fixed point. In this paper, the dynamic characteristics of the chaotic dynamic neuron and the condition that produces the chaotic response are analyzed, and the convergence conditions are presented.

  • PDF

Analysis of Response behaviors of offshore mooring structures by a piecewise-linear system (구분적선형시스템을 이용한 해양 구조물의 거동분석)

  • 마호성
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.251-265
    • /
    • 1997
  • A piecewise-linear system is utilized to model the offshore mooring system. The approximated piecewise-linear restoring force is obtained to be compared with the analytically derived restoring force of a mooring system. Two systems are compared to verify the applicability of the piecewise-linear system to evaluate responses of the mooring system. Using the piecewise-linear system, the response behaviors of mooring systems are examined under various excitations. Nonlinearity of the system and effects of both system and excitation parameters are intensively examined. System responses are identified mainly by observing Poincare maps. The mooring system is found to have various types of responses such as regular harmonic, subharmonic and complex nonlinear behaviors, including chaos by utilizing a piecewise-linear system. Various values of parameters are applied to determine the effects of parameters upon system responses. Response domains are determined by establishing parametric maps.

  • PDF

Hopf Bifurcation Study of Inductively Coupled Power Transfer Systems Based on SS-type Compensation

  • Xia, Chenyang;Yang, Ying;Peng, Yuxiang;Hu, Aiguo Patrick
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.655-664
    • /
    • 2019
  • In order to analyze the nonlinear phenomena of the bifurcation and chaos caused by the switching of nonlinear switching devices in inductively coupled power transfer (ICPT) systems, a Jacobian matrix model, based on discrete mapping numerical modeling, is established to judge the system stability of the periodic closed orbit and to study the nonlinear behavior of Hopf bifurcation in a system under full resonance. The general flow of the parameter design, based on the stability principle for ICPT systems, is proposed to avoid the chaos and bifurcation phenomena caused by unreasonable parameter selection. Firstly, based on the state equation of SS-type compensation, a three-dimensional bifurcation diagram with the coupling coefficient as the bifurcation parameter is established with a numerical simulation to observe the nonlinear phenomena in the system. Then Filippov's method based on a Jacobian matrix model is adopted to deduce the boundary of stable operation and to judge the type of the bifurcation in the system. Then the general flow of the parameter design based on the stability principle for ICPT systems is proposed through the above analysis to realize stable operation under the conditions of weak coupling. Finally, an experimental platform is built to confirm the correctness of the numerical simulation and modeling.

Concurrent topology optimization of composite macrostructure and microstructure under uncertain dynamic loads

  • Cai, Jinhu;Yang, Zhijie;Wang, Chunjie;Ding, Jianzhong
    • Structural Engineering and Mechanics
    • /
    • v.81 no.3
    • /
    • pp.267-280
    • /
    • 2022
  • Multiscale structure has attracted significant interest due to its high stiffness/strength to weight ratios and multifunctional performance. However, most of the existing concurrent topology optimization works are carried out under deterministic load conditions. Hence, this paper proposes a robust concurrent topology optimization method based on the bidirectional evolutionary structural optimization (BESO) method for the design of structures composed of periodic microstructures subjected to uncertain dynamic loads. The robust objective function is defined as the weighted sum of the mean and standard deviation of the module of dynamic structural compliance with constraints are imposed to both macro- and microscale structure volume fractions. The polynomial chaos expansion (PCE) method is used to quantify and propagate load uncertainty to evaluate the objective function. The effective properties of microstructure is evaluated by the numerical homogenization method. To release the computation burden, the decoupled sensitivity analysis method is proposed for microscale design variables. The proposed method is a non-intrusive method, and it can be conveniently extended to many topology optimization problems with other distributions. Several numerical examples are used to validate the effectiveness of the proposed robust concurrent topology optimization method.