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A Study on the Convergence Characteristics Analysis of Chaotic
Dynamic Neuron
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Abstract

Biological neurons generally have chaotic characteristics for permanent or transient period. The effects of
chaotic response of biological neuron have not yet been verified by using analytical methods. Even though the
transient chaos of neuron could be beneficial to overcoming the local minimum problem, the permanent chaotic
response gives adverse effect on optimization problems in general. To solve optimization problems, which are
needed in almost all neural network applications such as pattern recognition, identification or prediction, and
control, the neuron should have one stable fixed point. In this paper, the dynamic characteristics of the chaotic
dynamic neuron and the condition that produces the chaotic response are analyzed, and the convergence
conditions are presented.
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I. INTRODUCTION networks[5]. They showed some vpossibility that
chaotic neural networks could be used to solve
Biological neurons generally have chaotic optimization problems such as traveling salesman

characteristics for permanent or transient period[1]. problem(TSP).  However, the effects of chaotic

The chaotic responses of biological neurons have been response have not yet been verified by using analytical

modeled quantitatively by many researchers. The methods. The chaotic characteristics of neuron

primitive model was the Hodgkin-Huxley equation. generally cause an adverse effect on optimization

Caianiello[2,3] and Nagumo-Sato[4] modified this problems, but the transient chaos of neuron model

primitive model to make chaotic neural networks. could be beneficial to overcoming the local minimum

Aihara et al. proposed a discrete time model with problem. Aihara proposed that the transient chaotic

continuous output, and applied it to chaotic neural characteristics of neuron could be helpful for global

optimization[6,7]. Even though some modifications were
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made, those previously proposed chaotic neuron models
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learning algorithml[8]. In previous paper, we presented

a novel modified chaotic neural network for

simplification of structure and enforcement of dynamic
characteristics, and applied this network to system
identification and adaptive control[8]. In this paper, the
is studied for the

analysis of the chaotic characteristics of the chaotic

traditional chaotic neuron model

neural network(CNN), and the convergence condition is
presented.

II. CHAOTIC NEURON MODELS

1. Traditional Chaotic Neuron Model

The traditional model of a chaotic neuron was
suggested by Caianiello[1]. Past excitation inputs give
inhibitory influence to inside neurons for refractory
period. This inhibitory influence of past firing
decreases  exponentially  with Under this
assumption, the behavior of a neuron was modeled by

time.

a nonlinear differential equation as shown in eqn. (1).

t
x(k +1) = u(A(k) —aZK’x(k -r)-6)

=0 (D
where x(k+1) is the output of a neuron at discrete
time k+1, and x(k) takes either 0 or 1. wu( -) is a unit
step function, A(k) is the strength of the activation
input at discrete time kK, and K’ is the damping factor

of the refractoriness having values between 0 and 1.
The constant @ is a positive parameter, and 0 is the
threshold of a chaotic neuron. If the internal state of a
neuron @ at time k+I is assumed to be given by the
following equation[3],

yk+)=Ak)-a- Y K x(k-r)-0
par 2

Then eqn. (1) can be rewritten as

x(k+1)=uly(k +1)] 3)

By using a bifurcation parameter a(k), eqn. (2) can be
rewritten as

y(ke+1) = K" y(k) —a -uly(k)]+a(k) (4)
where a(k) is defined as
a(k)=Ak)-K "A(k-1)-(1~-K")-8 (5)

The conventional chaotic neuron model, suggested
by Nagumo and Satof{4], has two different types of
input simultaneously: one from same layer and another

form outside. It also has a refractory term, which i1s
self-feedback. The refractory term performs effective
dynamic characteristics through repeated signal control
of one of three terms, which affect output of the
chaotic neuron. The neuron model is shown in fig. 1.

Refractory
Input

16 80
Extemal -
Inputs :
K9] Output
W.R x(k+1)
h,(x,(k
Feodback "1 :
Inputs ) .
h, (x,(K)
W, R

im

Fig. 1. Chaotic neuron unit

Generally, the dynamics of the ith chaotic neuron in

networks at discrete time k+I is expressed as

n k
x,(k+ )= fyl Y wi > KT (k-r)

J=1 r=0

m k
+ZW§ZOK;hj(xi(k—r))
Jj=1 r=

k
_a'zK:gi(xi(k_r))"ei]
r=0 (6)

where fa( -) is a sigmoid function, wg and wg are
coupling coefficients(weights) from the jth external
neuron and the jth feedback neuron to the ith neuron,
Ii{k-r) is the strength of the jth

externally applied input at time k-~r, hi{x{k-r)) is a

respectively.

transfer function of the axon connected to the jth
chaotic neuron, and gi{x(k-r)) is a refractory function
of the ith chaotic neuron at time k-r, usually that is
an identity function. The n and m are the numbers of
external and feedback inputs applied to the chaotic

r r r
neuron. The decay parameters, Kx, Km, and K- are
the damping factors of the external, feedback, and
refractoriness, respectively. In this paper, we assumed

the constant value for decay parameters K. The b; is
the threshold of the ith chaotic neuron.

Aihara represented the ith chaotic neuron equation in
a reduced form by dividing it into feedback, external,

and refractory term[5]. Each term is expressed as

ER+D=K-&FR)+ Y WiL(R)
j=1 (7N
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nk+)=K- () + Y Wik, (k) o
J=

Gitk+)=K-{;(k)-ag;(f;(y:(k)-6,(1-K) (g
If the internal state of a chaotic neuron at time k+I is
expressed as

yitk+) =&k +)+n,(k+ D)+ (k+1) (10).
then the eqn. (10) can be written as follows

yiltk+1) = K- (&;(k) +m;(k) + ¢ (k))

£ 2 Wi+ > with; (fy (5 (6)
Jj= j=

—ag; (fn (7 (k) - 6;(1-K) ab.

yi(t) is defined as Yi()=&i(O)+m 1)+ ()
eqn. (11) can be expressed as

Since

ik + =Ky, (k)+ D w1+ D with, (fu (i (k)
j=1 j=1

-ag; (fy (3, (N-6,(1-K) (12).

In order to apply the continuous Hopfield neural
network structure to the recurrent inputs, Aihara et al
assumed the symmetric structure of recurrent weights,

R R R
therefore Wi jis Wi 0

. This neural network used
two kinds of learning rules in the same network.
Since this structure reduces the efficiency of learning
and dynamic characteristics of network, this model is

not appropriate for modeling dynamic systems.
2. Chaotic Dynamic Neuron Model

Since the chaotic model is including

complicate nonlinear function, it requires simplification
to reduce the computation time. This paper presents a

neuron

chaotic dynamic neuron unit with same chaotic

characteristics. Since the 2&8:(/n(¥i(k))) term in eqn.

D> wihi(fu (k)

(12) is overlapped with the term “jo

in the case of i=j, the 28i(/N(i(K))) is abbreviated
in this modified model. For more simplification, the
threshold term 0,.(1-K), is set to '0’, and the

nonlinear function hi() , is set '1’. Fig. 2 shows

modified chaotic neuron unit.

External
Inputs
Output
x(k+1)
Feedback |
Inputs

Fig. 2. Chaotic dynamic neuron unit
Then eqn. (6) is reduced to eqn. (14).

yilk+1) =K-yi(k)+zn:w§ -Ij(k)+iw§ x, (k)

=1 =1 (13)
xi(k+1) = fyly;(k+1)] (14)
1
Itk + D] =——rsr
PR (15)

where € is the slope of a sigmoid function.
To increase dynamic characteristics, the nonsymmetric
weights are applied to recurrent inputs such that

R R R
W.. W, W, # .
i * Wii> Wi 0. T'he chaotic neuron sums three

inputs: the refractoriness K-y (k), the activation
n m
> wh k) . > wf xi (k)
j=1 , and the recurrent input o

The summation result is passed to the nonlinear

sigmoid function. This model is similar to the
transiently chaotic neural network(TCNN) except for
the recurrent input terml6], and has similar

characteristics as TCNN.

3 Analyzing The Chaotic Characteristics of Chaotic
Neuron

The single neuron model in fig. 3 is the traditional
chaotic neuron model suggested by Nagumo-sato and
Aihara. The simplified single chaotic neuron model is
described in eqn. (16) and (17).

y(k+1) =K y(k)-x(k)+ A(k) (16)

1

x(k+1)=fN[J’i(k+1)]=_—Wi)_
1+e

£ a7n

where y(k+1) is internal state of chaotic neuron at
discrete time k+1, x(k+l) is the output of chaotic
neuron at discrete time k+I, K is the refractory
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parameter, A(k) is the activation of chaotic neuron at
discrete time k, and € is the slope of a sigmoid
function. As shown in eqn. (16), the internal state of
chaotic neuron is determined by summation of three

inputs: refractory, recurrent and activational inputs.

Output
X(k+1)

!

Chaotic Neuron
Unit
Sn (y(k+1))

A(k)
Actvation

Fig. 3. Single chaotic neuron unit
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Fig. 4 Output characteristics of CNN for different
activation values (In case of refractory K=0.7)
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Fig. 5 Bifurcation diagram of logistic map for CNN

The output of neuron is determined by a nonlinear
sigmoid function in egn. (17). The output of neuron
has different
activation values as shown in fig. 4. The fig. 4 shows

output characteristics depending on

the poincare map for identification of chaotic

characteristics. The slope is fixed at €=0.06 the
refractory value is also fixed at K=0.7, and the
activation value has four different values: A=02,
A=05, A=0.7, and A=0.9. In cases of A=02 and A=0.7,
the graphs show chaotic outputs. In cases of A=0.5
and A=09,
shows a limit cycle, and fig. 4.d shows a typical orbit

which

Depending on activation values, the output of chaotic

the outputs have fixed point. Fig. 4b

spirals into the fixed point as k-
neuron shows chaotic characteristics or fixed points.
Fig. 5 shows the bifurcation diagram for logistic map

based on modified chaotic neurons. In this case, the

slope is fixed at € =0.06  the refractory value is also
fixed at K=0.7, and the activation value varies from 0
to 1.

The output is split like period doubling



36 /54 9" 79 £3 54 BF AF

bifurcation, and the map  becomes chaotic

intermuttently.

Lyapunov Exponenti

1 L ! )
0o 02 04 06 08 10

Activation A

Fig. 6 Lyapunov exponent diagram A

Even though logistic map in fig. 5 exhibits aperiodic
orbits for certain activation values, Lyapunov exponent
1s more computationally useful for verifying chaotic
characteristics. A positive Lyapunov exponent is a
signature of chaos. Fig. 6 shows Lyapunov exponent
diagram. The formula is defined as

1 n—1
A=1m{= ) In| f(x;)[}
i) s

X

where 4 is Lyapunov exponent, *i is the state of

orbit in ith iterations, and 10O is a smooth function.
For limited p cycle, Lyapunov exponent can be defined
as

1 &
== In| f'(x,)]
p ; 19).

In this modified chaotic neural network application,
Lyapunov exponent could be defined as

1 p-1 2 _ey,,/s
~—) In|K-—2——|
P £

Fig. 7 shows three dimensional diagram of Lyapunov

(20)

exponent with variations of slope and activation. Fig. 8
shows the contour map of Lyapunov exponent. These
results show that output is produced
intermittently depending on the slope and activation

chaotic

values.

"Q/;'{'/'/;//‘."*s‘ (; ’
S
‘”l»*' i

Ny /

Fig. 8 Contour map of lyapunov exponent

III. CONVERGENCE AND STABILITY OF CHAOTIC
DYNAMIC NEURON

1. Single Chaotic Dynamic Neuron Model

A single chaotic dynamic neuron model shown in
weighted recurrent

wh - I(k)

fig. 9 has three inputs: input

w - fy (k)

refractory input K-y (k). The output is determined by

weighted  input and

a sigmoid function of weighted sum. It can be
expressed by egn. (21) and (22).

yk+D=K-y®)+w 1@ +wE £y (k) (a1)
x(k+1) = fyly(k+1)] (22).
where In0 is a sigmoid function
Fulyte4 D=

—y(k+)
l+e A,and K, w and w* are

refractory variable, weight for external input, and
weight for recurrent input respectively. I(k), y(k), and

x(k) are the external input, the internal state, and the
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output of single neuron respectively at time k.

Output
x(k+1)

T

Chaotic Dynamic
Neuron Unit

Sy (y(kH1))

I(k)

Actvation

Fig. 9 Single chaotic dynamic neuron unit

2. Convergence and Stability of Chaotic Dynamic
Neuron

To solve optimization problems, which are needed in
almost all neural network applications such as pattern
recognition, identification or prediction, and control, this
neuron should have one stable fixed point. Chaotic
characteristics or limit cycle in the output of neuron
should disappear in permanent in order to solve
Therefore, the chaotic
characteristics of chaotic neuron should be transient.
Definition 1 Suppose y' (k) satisfies

optimization  problems.

Y k+)=f(y *(k)), then y'(k) is an equilibrium point
point); y(k) = y*(k) then
yk+1)= f(yk+D) = £y () =y (k)

orbit remains at y'(k) for all further iterations.

(fixed because  if

Hence the

Definition 2: If the denivative of any one dimensional

system Y(k+1D=f(3(k)) has a negative value at the
fixed point y'(k) , then the fixed point is stable.

Theorem 1: Let wh be the recurrent weight for the

internal state of chaotic dynamic neural

network(CDNN) y'(k) and Sf "be defined as

Sf- =y (y(k))/ ay(k) Iy(k)=y‘(k) , Ine) i

the output of neuron with a sigmoid function. The

where

convergence is guaranteed for only one fixed point

y'(k) if w® has the following condition

1-K
f (23).

Proof: From eqn. (21) and definition 1, the internal
state  y(k) at the fixed point can be represented as

yE)=K-y () +w" IR+ 07 0) (o),
Egn. (24) can be rewritten as

- * F »
(lwkk) 'y (k)—%,—;-l(k) = fu(y" (k)

~(1—K)-Sf.<sz

(25).

b)) b=1;1(k)
w

a=-—
Let w and

a-y (k)-b=fy(y" (k) (26).
Let FOTW)=a-y (k)=b ang GO (K)=fy(y (k)

then eqn. (26) can be rewritten as
F(y (k)= G(y" (k) @,

If a20 the always stable condition at the fixed
point with only one fixed point can be defined by

, then

using definition 2 as follows

3G(y" (k) 9 A0 P

max |

oy (k) " (k) (28).
Eqn. (28) can be rewritten as
Sy max Sa< oo (29).
R

From eqn. (29), the stability condition related to W

can be made as

0wk < 1K
S r max (30)
If a<0, the always stable condition at the fixed

point with only one fixed point can be defined by
using definition 2 as follows

—o<a<—

S 1 Max 31)

From eqn. (31), the stability condition related to wk

can be made as

—(1-K)- Sy ppax <wt <0 (32)
By using eqn. (30) and (31), the stability condition
expressed in eqn. (23) is made.

O<ax<s SMAX | the fixed points can be

In case
classified as three types: l)two fixed points case, 2)

three fixed points case, and 3) one fixed point case.

1) Two fixed point case:
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Two fixed points case can happen when the slopes

of two functions, F(y (k)), G(Y'(k)), have the same

value as follows

3G (k) _ oF(y" (k)

oy" (k) oy’ (k) (33)
In this case eqn. (33) can be represented as
a = x(k) > (1- x"(k))/s (34)

where x'(k) is the output of chaotic dynamic neuron
at a fixed point, and s is the slope of a sigmoid
function. From eqn. (34), x'(k) and y'(k) are resolved

to
. 1++1-4as
Xk =—
2a (35)
Y (k) == -In[— 221

1+\1-das ] (36)

And eqn. (26) can be rewritten as

b=a -y (k)-x (k)

2a _1]_1i41—4as
1+41-4as 2a (37)

The fixed point a in eqn. (35) is half-stable, and
another fixed point is stable but it locates at near 0

=—asIn[

or 1.
2) Three fixed points case:

2a 1-+1-4as <

—asn[ -1}- b
—+v1-4as 2a
2a 1++1-4as
< —asn[ -1]- 2 (38)

1+\/1——4as

Two fixed points near 0 and 1 are stable, and the
other fixed point between 0 and 1 is unstable.

3) One fixed point case:

2a 1++1-4as

-1}-

+1“_4as 2a (39)

This case has one stable fixed point which is located

b>—asln[1

at near 1

2a 1-+1-4as

-1]-

1-+1-4as 2a 40)

This case has one stable fixed point which is located

b < —asln[

at near 0

In case of , there is one fixed point
which is unstable by definition 2.

R ..
W" can be limited as

—OOSWR<—(1“K)'SI,MAX (41)

3 Chaos and limit cycle condition

1
a=- * * *
If Sf , the slopes of F(y (k)=a-y (k)-b

and GO ()= fy(y" (k)

output of chaotic dynamic neuron shows stable limit

are perpendicular. The

cycle.

1
a=-—-—— * *
If Ss . the slopes of F(y (k))=a-y (k)-b anq

G(y*(k))=f1v(y*(k)) are almost perpendicular. The
output of chaotic dynamic neuron shows chaos. The
result of chaotic response is shown in fig. 4.a and
fig. 4.c.

IV. CONCLUSION

In this paper, we presented the

condition of the chaotic dynamic neuron. Even though

convergence

the chaotic response may be helpful to overcoming
chaos should
disappear in time such as in the transiently chaotic

local minimum problem, the initial
neuron. Since the chaotic neural network has highly
dynamic characteristics and the high slope in the
sigmoid function, the network shows fast learning, but
also shows some stability problem. To overcome this
problem, the convergence and stability condition were
presented in this paper. This condition could be applied
to chaotic neural networks.
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