• Title/Summary/Keyword: Channel-estimation

Search Result 1,333, Processing Time 0.029 seconds

Estimation on Discharge Capacity of Prefabricated Vortical Drains Considering Influence Factors (영향인자를 고려한 연직배수재의 통수능 평가)

  • Shin Eun-Chul;Park Jeong-Jun;Kim Jong-In
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.9
    • /
    • pp.13-23
    • /
    • 2005
  • The prefabricated vertical drains (PVDs) are one of the most widely used techniques to accelerate the consolidation of soft clay deposits and dredged soil. Discharge capacity is one of the factors affecting the behavior of PVDs. In the field, a PVD is confined by clay or dredged soil, which is normally remolded during PVD installation. Under field conditions, soil particles may enter the PVD drainage channels, and the consolidation settlement of the improved subsoil may cause 131ding of the PVD. These factors will affect the discharge capacity of the PVDs. In this study an experimental study was carried out to estimate the discharge capacity of three different types of PVDs by utilizing the large-scale laboratory model testing and small-scale laboratory model testing equipments. The several factors such as confinement condition (confined by soft marine clay or dredged soil) and variations of the discharge capacity were studied with time under soil specimen confinement, The test results indicated that discharge capacity decreases with increasing load, time, and hydraulic gradient. With load application, the cross-sectional area of the drainage channel of PVD decreases because the filter of PVD is pressed into the core. The discharge capacity of the soft marine clay-confined PVDs is much lower than that of the dredged soil-confined PVDs.

Estimation of Habitats Suitability Index based on Hydraulic Conditions (수리조건을 이용한 생물서식처 적합도 지수 산정 -홍천강을 대상으로-)

  • Lee, Jae-Yil;Lee, Gyu-Sung;Ahn, Hong-Kyu;Ha, Sung-Ryong
    • Journal of Wetlands Research
    • /
    • v.13 no.1
    • /
    • pp.149-160
    • /
    • 2011
  • This study developed a HSI for the creatures in Hongcheon River in order to analyze the conditions proper for habitats. For the index, the investigator identified a total of seven items encompassing hydraulic characteristics such as flow velocity and water depth, and water quality characteristics such as water temperature, BOD, DO, TN, and TP. The subject river was simulated, inspected, and revised with a two-dimensional river model (RMA-2) and water quality model (QUAL2E). Using GIS, the developed index was divided by section by reflecting river characteristics and compared and analyzed with the statistics. The river was divided into a total of 29 reaches by reflecting the basic characteristics and the features of the hydraulic coefficient on the cross-sections of the river. According to the analysis results, the fish scored the highest mean of the overall habitat suitability index of 0.769 at reach 27. Each of the variables had the following mean values: 0.122 m/s for flow velocity, 0.782m for water depth, $14.3^{\circ}C$ for water temperature, 0.68 mg/l for BOD, 10.3 mg/l for DO, 2.4 mg/l for TN, and 0.0121mg/l for TP.

A Fast Error Concealment Using a Data Hiding Technique and a Robust Error Resilience for Video (데이터 숨김과 오류 내성 기법을 이용한 빠른 비디오 오류 은닉)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.10B no.2
    • /
    • pp.143-150
    • /
    • 2003
  • Error concealment plays an important role in combating transmission errors. Methods of error concealment which produce better quality are generally of higher complexity, thus making some of the more sophisticated algorithms is not suitable for real-time applications. In this paper, we develop temporal and spatial error resilient video encoding and data hiding approach to facilitate the error concealment at the decoder. Block interleaving scheme is introduced to isolate erroneous blocks caused by packet losses for spatial area of error resilience. For temporal area of error resilience, data hiding is applied to the transmission of parity bits to protect motion vectors. To do error concealment quickly, a set of edge features extracted from a block is embedded imperceptibly using data hiding into the host media and transmitted to decoder. If some part of the media data is damaged during transmission, the embedded features are used for concealment of lost data at decoder. This method decreases a complexity of error concealment by reducing the estimation process of lost data from neighbor blocks. The proposed data hiding method of parity bits and block features is not influence much to the complexity of standard encoder. Experimental results show that proposed method conceals properly and effectively burst errors occurred on transmission channel like Internet.

Self-Adaptive Performance Improvement of Novel SDD Equalization Using Sigmoid Estimate and Threshold Decision-Weighted Error (시그모이드 추정과 임계 판정 가중 오차를 사용한 새로운 SDD 등화의 자기적응 성능 개선)

  • Oh, Kil Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.17-22
    • /
    • 2016
  • For the self-adaptive equalization of higher-order QAM systems, this paper proposes a new soft decision-directed (SDD) algorithm that opens the eye patterns quickly as well as significantly reducing the error level in the steady-state when it is applied to the initial equalization stage with completely closed eye patterns. The proposed method for M-QAM application minimized the computational complexity of the existing SDD by the symbol estimated based on the two symbols closest to the observation, and greatly simplified the soft decision independently of the QAM order. Furthermore, in the symbol estimating it increased the reliability of the estimates by applying the superior properties of the sigmoid function and avoiding the erroneous estimation of the threshold function. In addition, the initialization performance was improved when an error is generated to update the equalizer, weighting the symbol decision by the threshold function to the error, resulting in an extension of the range of error fluctuations. As a result, the proposed method improves remarkably the computational complexity and the properties of initialization and convergence of the traditional SDD. Through simulations for 64-QAM and 256-QAM under multipath channel conditions with additive noise, the usefulness of the proposed methods was confirmed by comparing the performance of the proposed 2-SDD and two forms of weighted 2-SDD with CMA.

Plane Experiments for Estimating Performance of the Sluice of Tidal Power Plant (조력발전용 수문 성능평가를 위한 평면 수리모형실험)

  • Oh, Sang-Ho;Lee, Kwang-Soo;Jang, Se-Chul;Lee, Dal-Soo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.6
    • /
    • pp.474-481
    • /
    • 2011
  • The discharge coefficient and spatial velocity distribution were clarified by carrying out a physical experiment to assess the performance of sluice for tidal power generation. The physical experiment was performed by manufacturing 10 sluce models whose scale is 1/70 of the prototype and installing it in the planar open channel, which has apron sections in front of and behind the sluice models. In particular, it was attempted to reasonably determine the locations and method of measuring water levels that may affect estimation of the discharge coefficient. Based on the experimental results for various conditions of discharges and tidal levels, the discharge coefficient of the sluice in the experiment was estimated as 1.3 to 1.4. Meanwhile, it was found that velocities were 2~3% faster at the sluices near the central region whereas 4~5% slower at the sluices on both sides, in comparison to the average value of the mean velocities of the ten sluices.

Frame Synchronization Algorithm based on Differential Correlation for Burst OFDM System (Burst OFDM 시스템을 위한 차동 상관 기반의 프레임 동기 알고리즘)

  • Um Jung-Sun;Do Joo-Hyun;Kim Min-Gu;Choi Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10C
    • /
    • pp.1017-1026
    • /
    • 2005
  • In burst OFDM system, the frame synchronization should be performed first for the acquisition of received frame and the estimation of the correct FFT-window position. The conventional frame synchronization algorithms using design features of the preamble symbol, the repetition pattern of the OFDM symbol by pilot sub-carrier allocation rule and Cyclic Prefix(CP), has difficulty in the detection of precise frame timing because its correlation characteristics would increase and decrease gradually. Also, the algorithm based on the correlation between the reference signal and the received signal has performance degradation due to frequency offset. Therefore, we adopt a differential correlation method that is robust to frequency offset and has the clear peak value at the correct frame timing for frame synchronization. However, performance improvement is essential for differential correlation methods, since it usually shows multiple peak values due to the repetition pattern. In this paper, we propose an enhanced frame synchronization algorithm based on the differential correlation method that shows a clear single peak value by using differential correlation between samples of identical repeating pattern. We also introduce a normalization scheme which normalizes the result of differential correlation with signal power to reduce the frame timing error in the high speed mobile channel environments.

An Experimental Study for Estimation of Head Loss Coefficients at Surcharged Circular Manhole (과부하 원형맨홀에서의 손실계수 산정을 위한 실험적 연구)

  • Kim, Jung-Soo;Song, Ju-Il;Jang, Suk-Jin;Yoon, Sei-Eui
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.3
    • /
    • pp.305-314
    • /
    • 2008
  • Urban sewer systems are designed to operate in open-channel flow regime and energy loss at circular manholes are usually not significant. However, the energy loss at manholes, often exceeding the friction loss of pipes under surcharge flow, is considered as one of the major causes of inundation in urban area. Therefore, it is necessary to analyze the head loss associated with manholes, especially in surcharge flow. Hydraulic experimental apparatus which can be changed the invert type(CASE A, B, C) and step height(CASE I, II, III) was installed for this study. The range of the experimental discharges were from $1.0{\ell}/sec$ to $5.6\;{\ell}/sec$. As the manhole diameter ratio($D_m/D_{in}$) increases, head loss coefficient increases due to strong horizontal swirl motion. Head loss coefficient was maximum because of strong oscillation of water surface when the range of manhole depth ratios($h_m/D_{in}$) were from 1.0 to 1.5. The average head loss coefficients for CASE A, B, and C were 0.45, 0.37, and 0.30, respectively. Accordingly, U-invert is most effective for energy loss reduction at circular manhole. This head loss coefficients could be available to design the urban sewer system with surcharge flow.

Application of an Automated Time Domain Reflectometry to Solute Transport Study at Field Scale: Experimental Methodology and Calibration of TDR (시간영역 광전자파 분석기(Automatic TDR System)를 이용한 오염물질의 거동에 관한 연구: 실험방법 및 검정)

  • Kim, Dong-Ju
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.699-712
    • /
    • 1996
  • Field scale experiments using an automated 144-channel TDR system were conducted which monitored the movement of solute through unsaturated loamy soils. The experiments were carried out on two different field plots of 0.54 ha to study the vertical movement of solute plume created by applying a square pulse of $CaCl_2$ as a tracer. The residence concentration was monitored at 24 locations on a transect and 5 depths per location by horizontally-positioning 50 cm long triple wire TDR probes to study the heterogeneity of solute travel times and the governing transport concept at field scale. This paper describes details of experimental methodology and calibration aspects of the TDR system. Three different calibration methods for estimation of solute concentration from TDR-measured bulk soil electrical conductivity were used for each field site. Data analysis of mean breakthrough curves (BTCs) and parameters estimated using the convection-dispersion model (CDE) and the convective-lognormal transfer function model (CLT) reveals that the automated TDR system is a viable technique to study the field scale solute transport providing a normal distribution of resident concentration in a high resolution of time series, and that calibration method does not significantly affect both the shape of BTC and the parameters related to the peak travel time. Among the calibration methods, the simple linear model (SLM), a modified version of Rhoades' model, appears to be promising in the calibration of horizontally-positioned TDR probes at field condition.

  • PDF

Estimation of Surface Reflectance by Utilizing Single Visible Reflectance from COMS Meteorological Imager - Analysis of BAOD correction effect - (천리안위성 기상 탑재체의 가시 채널 관측을 이용한 지표면 반사도 산출 - 배경광학두께 보정의 효과 분석 -)

  • Kim, Mijin;Kim, Jhoon;Yoon, Jongmin
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.5
    • /
    • pp.627-639
    • /
    • 2014
  • Accurate correction of surface effect from back scattered solar radiance is one of key issue to retrieve aerosol information from satellite measurements. In this study, two different methods are applied to retrieve surface reflectance by using single visible channel measurement from meteorological imager onboard COMS. The first one is minimum reflectance method, which composes the minimum value among previously measured reflectances at each pixel over a certain search window length. This method assumes that the darkest pixel corresponds to the aerosol-free condition, and deduces surface reflectance by correcting atmospheric scattering from the measured visible reflectance. The second method, named as the "atmospheric correction method" in this study, estimates the result by correcting aerosol and atmospheric scattering with ground-based observation of aerosol optical properties. The purpose of this study is to investigate the retrieval accuracy of the widelyused minimum reflectance method. Also, the retrieval error caused by the loading of background aerosol is mainly estimated. The comparison between surface reflectances retrieved from the two methods shows good agreement with the correlation coefficient of 0.87. However, the results from the minimum reflectance method are slightly overestimated than the values from the atmospheric correction method when surface reflectance is lower than 0.2. The average difference between the two results is 0.012 without the background aerosol correction. By considering the background aerosol effect, however, the difference is reduced to 0.010.

An Estimation of the Composite Sea Surface Temperature using COMS and Polar Orbit Satellites Data in Northwest Pacific Ocean (천리안 위성과 극궤도 위성 자료를 이용한 북서태평양 해역의 합성 해수면온도 산출)

  • Kim, Tae-Myung;Chung, Sung-Rae;Chung, Chu-Yong;Baek, Seonkyun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.3
    • /
    • pp.275-285
    • /
    • 2017
  • National Meteorological Satellite Center(NMSC) has produced Sea Surface Temperature (SST) using Communication, Ocean, and Meteorological Satellite(COMS) data since April 2011. In this study, we have developed a new regional COMS SST algorithm optimized within the North-West Pacific Ocean area based on the Multi-Channel SST(MCSST) method and made a composite SST using polar orbit satellites as well as the COMS data. In order to retrieve the optimized SST at Northwest Pacific, we carried out a colocation process of COMS and in-situ buoy data to make coefficients of the MCSST algorithm through the new cloud masking including contaminant pixels and quality control processes of buoy data. And then, we have estimated the composite SST through the optimal interpolation method developed by National Institute of Meteorological Science(NIMS). We used four satellites SST data including COMS, NOAA-18/19(National Oceanic and Atmospheric Administration-18/19), and GCOM-W1(Global Change Observation Mission-Water 1). As a result, the root mean square error ofthe composite SST for the period of July 2012 to June 2013 was $0.95^{\circ}C$ in comparison with in-situ buoy data.