Browse > Article
http://dx.doi.org/10.7780/kjrs.2017.33.3.3

An Estimation of the Composite Sea Surface Temperature using COMS and Polar Orbit Satellites Data in Northwest Pacific Ocean  

Kim, Tae-Myung (National Meteorological Satellite Center/Korea Meteorological Administration)
Chung, Sung-Rae (National Meteorological Satellite Center/Korea Meteorological Administration)
Chung, Chu-Yong (National Meteorological Satellite Center/Korea Meteorological Administration)
Baek, Seonkyun (National Meteorological Satellite Center/Korea Meteorological Administration)
Publication Information
Korean Journal of Remote Sensing / v.33, no.3, 2017 , pp. 275-285 More about this Journal
Abstract
National Meteorological Satellite Center(NMSC) has produced Sea Surface Temperature (SST) using Communication, Ocean, and Meteorological Satellite(COMS) data since April 2011. In this study, we have developed a new regional COMS SST algorithm optimized within the North-West Pacific Ocean area based on the Multi-Channel SST(MCSST) method and made a composite SST using polar orbit satellites as well as the COMS data. In order to retrieve the optimized SST at Northwest Pacific, we carried out a colocation process of COMS and in-situ buoy data to make coefficients of the MCSST algorithm through the new cloud masking including contaminant pixels and quality control processes of buoy data. And then, we have estimated the composite SST through the optimal interpolation method developed by National Institute of Meteorological Science(NIMS). We used four satellites SST data including COMS, NOAA-18/19(National Oceanic and Atmospheric Administration-18/19), and GCOM-W1(Global Change Observation Mission-Water 1). As a result, the root mean square error ofthe composite SST for the period of July 2012 to June 2013 was $0.95^{\circ}C$ in comparison with in-situ buoy data.
Keywords
MCSST; Composite SST; COMS; NOAA; GCOM-W1;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ahn, M. H., B. J. Hwang, E. H. Shon, C. Y. Chung, and X. Wu, 2006. Derivation of regression coefficients for sea surface temperature retrieval over East Asia, Advances in Atmospheric Sciences, 23(3): 474-486.   DOI
2 Chung, C. Y., H. K Lee, H. J. Ahn, M. H. Ahn, and S. N. Oh, 2006. Developing the Cloud Detection Algorithm for COMS Meteorological Data Processing System, Korean Journal of Remote Sensing., Korea, 22(5): 367-372 (in Korean with English abstract).   DOI
3 Chung, C. Y., J. S. Hwang, T. M. Kim, and J. R. Lee, 2012. First Year Report on CMOS SST Product, Group for high Resolution Sea Surface Temperature, Tokyo. Japan, Jun.4-8, 2: 195-197.
4 Guan, L. and H. Kawamura, 2004. Merging satellite infrared and microwave SSTs-Methodology and evaluation of the new SST, Journal of Oceanography, 60(5): 905-912.   DOI
5 Japan Meteorological Agency (JMA), 2012. VALIDATION OF A MULTI-CHANNEL SEA SURFACE TEMPERATURE (SST) ALGORITHM CREATED BY JMA, CGMS-40, JMA-WP-10
6 McMillin, L. M., 1975. Esimation of sea surface temperatures from two infrared window measurements with different absorption, Journal of Geophysical Research, 80(36): 5113-5117.   DOI
7 McClain E. P., W. G. Pichel, and C. C. Walton, 1985. Comparative performance of AVHRR-based multichannel sea surface temperature. Journal of Geophysical Research:Oceans, 90(C6): 3655-3661.
8 National Institute of Meteorological Research (NIMR), 2009. Research for the Meteorological Observation Technology and Its Application (I): 26-41.
9 National Meteorological Satellite Center (NMSC), 2012. COMS Meteorological Data Processing System Algorithm Theoretical Basis Document, Sea Surface Temperature.
10 Park, K. A., F. Sakaida, and H. Kawamura, 2008. Error Characteristics of Satellite-observed Sea Surface Temperatures in the Northeast Asian Sea. Korean Earth Science Society, 29(3): 280-289.   DOI
11 Park, K. A., D. S. Ullman, K. Kim, J .Y. Chung, and K. R. Kim, 2007. Spatial and temporal variability of Satellite-observed Subpolar Front in the East/Japan Sea. Deep Sea Research Part I, 54(4): 453-470.   DOI
12 Minnett, P. and A. Kaiser-Weiss, 2012. Near-surface oceanic temperature gradients. GHRSST Discussion Document, 12: 1-7.
13 Prabakahara C., G. Dalu, and V.G. Kunde, 1974. Estimation of sea surface temperature from remote sensing in the 11 - 13${\mu}m$ window region, Journal of Geophysical Research, 79(33): 5039-5044.   DOI
14 Reynolds, R., and E. Marsico, 1993. An improved realtime global sea surface temperature analysis, Journal of climate, 6(1): 114-119.   DOI
15 Saunders, R. W, and K. T. Kriebel, 1988. An improved method for detecting clear sky radiances from AVHRR data, International Journal of Remote Sensing, 9(1): 123-150.   DOI
16 Stark, J. D., C. J. Donlon, M. J. Martin, and M. E. McCulloch, 2007. OSTIA: An operational, high resolution, real time, global sea surface temperature analysis system. IEEE, Oceania, Jun., pp. 1-4.
17 Zavody, A. M., C. T. Mutlow and D. T. Llewellyn-Jones, 2000. Cloud Clearing over the Ocean in the Processing of Data from the Along-Track Scanning Radiometer(ATSR), Journal of Atmospheric and Oceanic Technology, 17(5) 595-615.   DOI