Browse > Article
http://dx.doi.org/10.7780/kjrs.2014.30.5.8

Estimation of Surface Reflectance by Utilizing Single Visible Reflectance from COMS Meteorological Imager - Analysis of BAOD correction effect -  

Kim, Mijin (Global Environment Laboratory, Dept. of Atmospheric Sciences, Yonsei University)
Kim, Jhoon (Global Environment Laboratory, Dept. of Atmospheric Sciences, Yonsei University)
Yoon, Jongmin (Atmospheric Chemistry Department, Max-Planck-Institute for Chemistry(Otto Hahn Institute))
Publication Information
Korean Journal of Remote Sensing / v.30, no.5, 2014 , pp. 627-639 More about this Journal
Abstract
Accurate correction of surface effect from back scattered solar radiance is one of key issue to retrieve aerosol information from satellite measurements. In this study, two different methods are applied to retrieve surface reflectance by using single visible channel measurement from meteorological imager onboard COMS. The first one is minimum reflectance method, which composes the minimum value among previously measured reflectances at each pixel over a certain search window length. This method assumes that the darkest pixel corresponds to the aerosol-free condition, and deduces surface reflectance by correcting atmospheric scattering from the measured visible reflectance. The second method, named as the "atmospheric correction method" in this study, estimates the result by correcting aerosol and atmospheric scattering with ground-based observation of aerosol optical properties. The purpose of this study is to investigate the retrieval accuracy of the widelyused minimum reflectance method. Also, the retrieval error caused by the loading of background aerosol is mainly estimated. The comparison between surface reflectances retrieved from the two methods shows good agreement with the correlation coefficient of 0.87. However, the results from the minimum reflectance method are slightly overestimated than the values from the atmospheric correction method when surface reflectance is lower than 0.2. The average difference between the two results is 0.012 without the background aerosol correction. By considering the background aerosol effect, however, the difference is reduced to 0.010.
Keywords
COMS; MI; Surface Reflectance; AERONET; Background aerosol optical depth;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Eck, T.F., B.N. Holben, J.S. Reid, O. Dubovik, A. Smirnov, N.T. O'Neill, I. Slutsker, and S. Kinne, 1999. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols, J. Geophys Res-Atmos., 104(D24): 31333-31349.   DOI
2 Fraser, R.S. and Y.J. Kaufman, 1985. The Relative Importance of Aerosol Scattering and Absorption in Remote-Sensing, IEEE T Geosci. Remote., 23(5): 625-633.
3 Holben, B.N., T.F. Eck, I. Slutsker, D. Tanre, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y.J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, 1998. AERONET - A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66(1): 1-16.   DOI   ScienceOn
4 Hsu, N.C., S.C. Tsay, M.D. King, and J.R. Herman, 2004. Aerosol properties over bright-reflecting source regions, IEEE T Geosci. Remote., 42(3): 557-569.   DOI   ScienceOn
5 Kotchenova, S.Y. and E.F. Vermote, 2007. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces, Applied optics, 46(20): 4455-4464.   DOI
6 Kim, M., J. Kim, M.S. Wong, J. Yoon, J. Lee, D. Wu, P.W. Chan, J.E. Nichol, C.-Y.C. Chung, and M.-L. Ou, 2014. Improvement of aerosol optical depth retrieval over Hong Kong from a geostationary meteorological satellite using critical reflectance with background optical depth correction, Remote Sens. Environ., 142(25): 176-187.   DOI
7 Knapp, K.R., R. Frouin, S. Kondragunta, and A. Prados, 2005. Toward aerosol optical depth retrievals over land from GOES visible radiances: determining surface reflectance, Int J. Remote Sens., 26(18): 4097-4116.   DOI
8 Knapp, K.R., T.H. Vonder Haar, and Y.J. Kaufman, 2002. Aerosol optical depth retrieval from GOES-8: Uncertainty study and retrieval validation over South America, J. Geophys Res-Atmos., 107(D7): AAC 2-1 - AAC 2-12.
9 Kotchenova, S.Y., E.F. Vermote, R. Matarrese, and F.J. Klemm, 2006. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Applied optics, 45, 6762-6774.   DOI
10 Lee, J., J. Kim, C.H. Song, J.H. Ryu, Y.H. Ahn, and C.K. Song, 2010. Algorithm for retrieval of aerosol optical properties over the ocean from the Geostationary Ocean Color Imager, Remote Sens. Environ., 114(5): 1077-1088.   DOI   ScienceOn
11 Lee, K.H., C.S. Hong, and Y.J. Kim, 2004. Atmospheric Aerosol Monitoring Over Northeast Asia During 2001 from MODIS and TOMS data, Korean Journal of Remote Sensing, 20(2): 77-89 (in Korean with English abstract).   과학기술학회마을   DOI
12 Levy, R.C., L.A. Remer, R.G. Kleidman, S. Mattoo, C. Ichoku, R. Kahn, and T.F. Eck, 2010. Global evaluation of the Collection 5 MODIS darktarget aerosol products over land, Atmos. Chem. Phys., 10: 10399-10420.
13 Remer, L.A., Y.J. Kaufman, D. Tanre, S. Mattoo, D.A. Chu, J.V. Martins, R.R. Li, C. Ichoku, R.C. Levy, R.G. Kleidman, T.F. Eck, E. Vermote, and B.N. Holben, 2005. The MODIS aerosol algorithm, products, and validation, J. Atmos. Sci., 62(4): 947-973.   DOI   ScienceOn
14 Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, 2013. Climate change 2013: The physical science basis. Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5), Cambridge Univ Press, New York.
15 Levy, R.C., L.A. Remer, S. Mattoo, E.F. Vermote, and Y.J. Kaufman, 2007. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance, J. Geophys Res-Atmos., 112(D13).
16 Lyapustin, A., Y. Wang, I. Laszlo, R. Kahn, S. Korkin, L. Remer, R. Levy, and J.S. Reid, 2011. Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm, J. Geophys Res-Atmos, 116(D3).
17 Vermote, E.F., D. Tanre, J.L. Deuze, M. Herman, and J.J. Morcrette, 1997. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview, IEEE T Geosci Remote, 35(3): 675-686.   DOI   ScienceOn
18 Wong, M.S., K.H. Lee, J.E. Nichol, and Z.Q. Li, 2010. Retrieval of Aerosol Optical Thickness Using MODIS 500${\times}$500 m(2), a Study in Hong Kong and the Pearl River Delta Region, IEEE T Geosci Remote, 48: 3318-3327.   DOI
19 Zhang, J.L., S.A. Christopher, and B.N. Holben, 2001. Intercomparison of smoke aerosol optical thickness derived from GOES 8 imager and ground-based Sun photometers, J. Geophys Res-Atmos., 106: 7387-7397.   DOI