DOI QR코드

DOI QR Code

An Estimation of the Composite Sea Surface Temperature using COMS and Polar Orbit Satellites Data in Northwest Pacific Ocean

천리안 위성과 극궤도 위성 자료를 이용한 북서태평양 해역의 합성 해수면온도 산출

  • Kim, Tae-Myung (National Meteorological Satellite Center/Korea Meteorological Administration) ;
  • Chung, Sung-Rae (National Meteorological Satellite Center/Korea Meteorological Administration) ;
  • Chung, Chu-Yong (National Meteorological Satellite Center/Korea Meteorological Administration) ;
  • Baek, Seonkyun (National Meteorological Satellite Center/Korea Meteorological Administration)
  • 김태명 (기상청 국가기상위성센터) ;
  • 정성래 (기상청 국가기상위성센터) ;
  • 정주용 (기상청 국가기상위성센터) ;
  • 백선균 (기상청 국가기상위성센터)
  • Received : 2016.08.08
  • Accepted : 2017.06.09
  • Published : 2017.06.30

Abstract

National Meteorological Satellite Center(NMSC) has produced Sea Surface Temperature (SST) using Communication, Ocean, and Meteorological Satellite(COMS) data since April 2011. In this study, we have developed a new regional COMS SST algorithm optimized within the North-West Pacific Ocean area based on the Multi-Channel SST(MCSST) method and made a composite SST using polar orbit satellites as well as the COMS data. In order to retrieve the optimized SST at Northwest Pacific, we carried out a colocation process of COMS and in-situ buoy data to make coefficients of the MCSST algorithm through the new cloud masking including contaminant pixels and quality control processes of buoy data. And then, we have estimated the composite SST through the optimal interpolation method developed by National Institute of Meteorological Science(NIMS). We used four satellites SST data including COMS, NOAA-18/19(National Oceanic and Atmospheric Administration-18/19), and GCOM-W1(Global Change Observation Mission-Water 1). As a result, the root mean square error ofthe composite SST for the period of July 2012 to June 2013 was $0.95^{\circ}C$ in comparison with in-situ buoy data.

국가기상위성센터(NMSC)는 2011년 4월부터 천리안 위성(COMS) 해수면온도자료를 생산해왔다. 본 연구에서는 천리안 해수면온도 알고리즘을 이용하여 북서태평양 지역에 최적화된 해수면온도 산출 알고리즘 및 정지궤도와 극궤도 위성의 해수면온도 자료 합성 알고리즘을 개발하였다. 북서태평양 해역에 최적화된 천리안위성 해수면온도를 산출하기 위해 천리안 위성 자료와 부이(Buoy) 해수면온도 자료를 이용하여 해당지역에 최적화된 회귀계수를 산출 하였으며, 정확도 향상을 위한 새로운 구름 및 기타 오염 화소 제거와 부이자료의 품질검사 과정을 수행하였다. 그리고 본 연구에서 산출한 북서태평양 지역에 최적화된 천리안 위성 해수면 온도와 극궤도 위성(NOAA-18/19 and GCOM-W1) 해수면온도 자료를 이용하여 합성해수면 온도를 산출하였다. 합성 방법은 국립기상과학원에서 개발한 합성해수면온도 알고리즘을 응용하여 적용하였다(NIMR, 2009). 북서태평양 해역에 최적화된 천리안위성 해수면온도를 산출하기 위해 2011년 4월부터 2012년 3월까지의 위성 및 부이 자료를 사용하였고, 합성 해수면온도를 산출하기 위해 2012년 7월부터 2013년 6월까지의 자료를 사용하였다. 합성 해수면온도와 부이 해수면온도 자료를 비교한 결과 $0.95^{\circ}C$의 평균 제곱근 오차(RMSE)를 나타냈다.

Keywords

References

  1. Ahn, M. H., B. J. Hwang, E. H. Shon, C. Y. Chung, and X. Wu, 2006. Derivation of regression coefficients for sea surface temperature retrieval over East Asia, Advances in Atmospheric Sciences, 23(3): 474-486. https://doi.org/10.1007/s00376-006-0474-7
  2. Chung, C. Y., H. K Lee, H. J. Ahn, M. H. Ahn, and S. N. Oh, 2006. Developing the Cloud Detection Algorithm for COMS Meteorological Data Processing System, Korean Journal of Remote Sensing., Korea, 22(5): 367-372 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2006.22.5.367
  3. Chung, C. Y., J. S. Hwang, T. M. Kim, and J. R. Lee, 2012. First Year Report on CMOS SST Product, Group for high Resolution Sea Surface Temperature, Tokyo. Japan, Jun.4-8, 2: 195-197.
  4. Guan, L. and H. Kawamura, 2004. Merging satellite infrared and microwave SSTs-Methodology and evaluation of the new SST, Journal of Oceanography, 60(5): 905-912. https://doi.org/10.1007/s10872-005-5782-5
  5. Japan Meteorological Agency (JMA), 2012. VALIDATION OF A MULTI-CHANNEL SEA SURFACE TEMPERATURE (SST) ALGORITHM CREATED BY JMA, CGMS-40, JMA-WP-10
  6. McMillin, L. M., 1975. Esimation of sea surface temperatures from two infrared window measurements with different absorption, Journal of Geophysical Research, 80(36): 5113-5117. https://doi.org/10.1029/JC080i036p05113
  7. McClain E. P., W. G. Pichel, and C. C. Walton, 1985. Comparative performance of AVHRR-based multichannel sea surface temperature. Journal of Geophysical Research:Oceans, 90(C6): 3655-3661.
  8. National Institute of Meteorological Research (NIMR), 2009. Research for the Meteorological Observation Technology and Its Application (I): 26-41.
  9. National Meteorological Satellite Center (NMSC), 2012. COMS Meteorological Data Processing System Algorithm Theoretical Basis Document, Sea Surface Temperature.
  10. Park, K. A., F. Sakaida, and H. Kawamura, 2008. Error Characteristics of Satellite-observed Sea Surface Temperatures in the Northeast Asian Sea. Korean Earth Science Society, 29(3): 280-289. https://doi.org/10.5467/JKESS.2008.29.3.280
  11. Park, K. A., D. S. Ullman, K. Kim, J .Y. Chung, and K. R. Kim, 2007. Spatial and temporal variability of Satellite-observed Subpolar Front in the East/Japan Sea. Deep Sea Research Part I, 54(4): 453-470. https://doi.org/10.1016/j.dsr.2006.12.010
  12. Minnett, P. and A. Kaiser-Weiss, 2012. Near-surface oceanic temperature gradients. GHRSST Discussion Document, 12: 1-7.
  13. Prabakahara C., G. Dalu, and V.G. Kunde, 1974. Estimation of sea surface temperature from remote sensing in the 11 - 13${\mu}m$ window region, Journal of Geophysical Research, 79(33): 5039-5044. https://doi.org/10.1029/JC079i033p05039
  14. Reynolds, R., and E. Marsico, 1993. An improved realtime global sea surface temperature analysis, Journal of climate, 6(1): 114-119. https://doi.org/10.1175/1520-0442(1993)006<0114:AIRTGS>2.0.CO;2
  15. Saunders, R. W, and K. T. Kriebel, 1988. An improved method for detecting clear sky radiances from AVHRR data, International Journal of Remote Sensing, 9(1): 123-150. https://doi.org/10.1080/01431168808954841
  16. Stark, J. D., C. J. Donlon, M. J. Martin, and M. E. McCulloch, 2007. OSTIA: An operational, high resolution, real time, global sea surface temperature analysis system. IEEE, Oceania, Jun., pp. 1-4.
  17. Zavody, A. M., C. T. Mutlow and D. T. Llewellyn-Jones, 2000. Cloud Clearing over the Ocean in the Processing of Data from the Along-Track Scanning Radiometer(ATSR), Journal of Atmospheric and Oceanic Technology, 17(5) 595-615. https://doi.org/10.1175/1520-0426(2000)017<0595:CCOTOI>2.0.CO;2