DOI QR코드

DOI QR Code

Estimation of Surface Reflectance by Utilizing Single Visible Reflectance from COMS Meteorological Imager - Analysis of BAOD correction effect -

천리안위성 기상 탑재체의 가시 채널 관측을 이용한 지표면 반사도 산출 - 배경광학두께 보정의 효과 분석 -

  • Kim, Mijin (Global Environment Laboratory, Dept. of Atmospheric Sciences, Yonsei University) ;
  • Kim, Jhoon (Global Environment Laboratory, Dept. of Atmospheric Sciences, Yonsei University) ;
  • Yoon, Jongmin (Atmospheric Chemistry Department, Max-Planck-Institute for Chemistry(Otto Hahn Institute))
  • 김미진 (연세대학교 대기과학과/지구환경연구소) ;
  • 김준 (연세대학교 대기과학과/지구환경연구소) ;
  • 윤종민
  • Received : 2014.09.18
  • Accepted : 2014.10.10
  • Published : 2014.10.31

Abstract

Accurate correction of surface effect from back scattered solar radiance is one of key issue to retrieve aerosol information from satellite measurements. In this study, two different methods are applied to retrieve surface reflectance by using single visible channel measurement from meteorological imager onboard COMS. The first one is minimum reflectance method, which composes the minimum value among previously measured reflectances at each pixel over a certain search window length. This method assumes that the darkest pixel corresponds to the aerosol-free condition, and deduces surface reflectance by correcting atmospheric scattering from the measured visible reflectance. The second method, named as the "atmospheric correction method" in this study, estimates the result by correcting aerosol and atmospheric scattering with ground-based observation of aerosol optical properties. The purpose of this study is to investigate the retrieval accuracy of the widelyused minimum reflectance method. Also, the retrieval error caused by the loading of background aerosol is mainly estimated. The comparison between surface reflectances retrieved from the two methods shows good agreement with the correlation coefficient of 0.87. However, the results from the minimum reflectance method are slightly overestimated than the values from the atmospheric correction method when surface reflectance is lower than 0.2. The average difference between the two results is 0.012 without the background aerosol correction. By considering the background aerosol effect, however, the difference is reduced to 0.010.

인공위성의 가시 영역 관측으로부터 에어로솔의 정량적인 정보를 산출하는데 있어, 지표면 반사도의 보정은 매우 중요한 역할을 한다. 이에 본 연구에서는 두 가지 방법을 이용하여 천리안위성의 기상탑재체로부터 관측된 가시채널의 반사도로부터 지표면 반사도를 산출하고, 상호 비교 하여 정확도를 검증하고자 하였다. 첫 번째 방법은 최소 반사도법으로, 동일한 화소에서 일정 기간 동안 관측된 반사도 중 최소값이 에어로솔에 의한 영향 없이 지표반사에 의한 영향만을 포함한다는 가정을 기반으로, 대기산란 효과를 보정하여 지표면 반사도를 산출하는 방법이다. 두 번째 방법은 미리 알고 있는 에어로솔 정보를 고려하여 대기-에어로솔 효과를 보정함으로써 지표면 반사도를 얻는 것으로 본 연구에서 대기 보정법 이라 칭한다. 두 번째 방법을 적용하기 위해서는 정확한 에어로솔 정보가 요구되므로, 에어로솔 광학두께의 오차범위가 0.01 (${\geq}440nm$) 이내인 것으로 알려진 AERONET의 산출물을 이용하였다. 본 연구의 주요 목적은 최소 반사도법을 통하여 산출되는 지표면 반사도가 어느 정도의 정확도를 가지는지를 파악하는데 있어, 대기 보정법을 통하여 산출되는 값을 기준 값으로 두고 비교 분석을 수행하였다. 또한, 대기 중 존재하는 배경광학두께가 최소 반사도법의 정확도에 미치는 영향을 분석해보고자 하였다. 서울 지역에서 2012년 봄철 기간(3월 ~ 5월)동안 AERONET 관측지점에서 산출된 결과를 분석 한 결과, 대기 보정법을 통해 산출된 지표면 반사도의 평균이 0.108로 나타났고, 배경광학두께에 대한 고려 없이 최소 반사도법을 통하여 산출된 지표면 반사도는 그에 비해 약 0.012 높은 값을 보였다. 한 편 배경광학두께를 고려하였을 경우 그 차이는 0.010으로 감소하여, 정확도 향상에 기여하였음을 확인하였다.

Keywords

References

  1. Eck, T.F., B.N. Holben, J.S. Reid, O. Dubovik, A. Smirnov, N.T. O'Neill, I. Slutsker, and S. Kinne, 1999. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols, J. Geophys Res-Atmos., 104(D24): 31333-31349. https://doi.org/10.1029/1999JD900923
  2. Fraser, R.S. and Y.J. Kaufman, 1985. The Relative Importance of Aerosol Scattering and Absorption in Remote-Sensing, IEEE T Geosci. Remote., 23(5): 625-633.
  3. Holben, B.N., T.F. Eck, I. Slutsker, D. Tanre, J.P. Buis, A. Setzer, E. Vermote, J.A. Reagan, Y.J. Kaufman, T. Nakajima, F. Lavenu, I. Jankowiak, and A. Smirnov, 1998. AERONET - A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66(1): 1-16. https://doi.org/10.1016/S0034-4257(98)00031-5
  4. Hsu, N.C., S.C. Tsay, M.D. King, and J.R. Herman, 2004. Aerosol properties over bright-reflecting source regions, IEEE T Geosci. Remote., 42(3): 557-569. https://doi.org/10.1109/TGRS.2004.824067
  5. Kim, M., J. Kim, M.S. Wong, J. Yoon, J. Lee, D. Wu, P.W. Chan, J.E. Nichol, C.-Y.C. Chung, and M.-L. Ou, 2014. Improvement of aerosol optical depth retrieval over Hong Kong from a geostationary meteorological satellite using critical reflectance with background optical depth correction, Remote Sens. Environ., 142(25): 176-187. https://doi.org/10.1016/j.rse.2013.12.003
  6. Knapp, K.R., R. Frouin, S. Kondragunta, and A. Prados, 2005. Toward aerosol optical depth retrievals over land from GOES visible radiances: determining surface reflectance, Int J. Remote Sens., 26(18): 4097-4116. https://doi.org/10.1080/01431160500099329
  7. Knapp, K.R., T.H. Vonder Haar, and Y.J. Kaufman, 2002. Aerosol optical depth retrieval from GOES-8: Uncertainty study and retrieval validation over South America, J. Geophys Res-Atmos., 107(D7): AAC 2-1 - AAC 2-12.
  8. Kotchenova, S.Y. and E.F. Vermote, 2007. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part II. Homogeneous Lambertian and anisotropic surfaces, Applied optics, 46(20): 4455-4464. https://doi.org/10.1364/AO.46.004455
  9. Kotchenova, S.Y., E.F. Vermote, R. Matarrese, and F.J. Klemm, 2006. Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: Path radiance. Applied optics, 45, 6762-6774. https://doi.org/10.1364/AO.45.006762
  10. Lee, J., J. Kim, C.H. Song, J.H. Ryu, Y.H. Ahn, and C.K. Song, 2010. Algorithm for retrieval of aerosol optical properties over the ocean from the Geostationary Ocean Color Imager, Remote Sens. Environ., 114(5): 1077-1088. https://doi.org/10.1016/j.rse.2009.12.021
  11. Lee, K.H., C.S. Hong, and Y.J. Kim, 2004. Atmospheric Aerosol Monitoring Over Northeast Asia During 2001 from MODIS and TOMS data, Korean Journal of Remote Sensing, 20(2): 77-89 (in Korean with English abstract). https://doi.org/10.7780/kjrs.2004.20.2.77
  12. Levy, R.C., L.A. Remer, R.G. Kleidman, S. Mattoo, C. Ichoku, R. Kahn, and T.F. Eck, 2010. Global evaluation of the Collection 5 MODIS darktarget aerosol products over land, Atmos. Chem. Phys., 10: 10399-10420.
  13. Levy, R.C., L.A. Remer, S. Mattoo, E.F. Vermote, and Y.J. Kaufman, 2007. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance, J. Geophys Res-Atmos., 112(D13).
  14. Lyapustin, A., Y. Wang, I. Laszlo, R. Kahn, S. Korkin, L. Remer, R. Levy, and J.S. Reid, 2011. Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm, J. Geophys Res-Atmos, 116(D3).
  15. Remer, L.A., Y.J. Kaufman, D. Tanre, S. Mattoo, D.A. Chu, J.V. Martins, R.R. Li, C. Ichoku, R.C. Levy, R.G. Kleidman, T.F. Eck, E. Vermote, and B.N. Holben, 2005. The MODIS aerosol algorithm, products, and validation, J. Atmos. Sci., 62(4): 947-973. https://doi.org/10.1175/JAS3385.1
  16. Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley, 2013. Climate change 2013: The physical science basis. Intergovernmental Panel on Climate Change, Working Group I Contribution to the IPCC Fifth Assessment Report (AR5), Cambridge Univ Press, New York.
  17. Vermote, E.F., D. Tanre, J.L. Deuze, M. Herman, and J.J. Morcrette, 1997. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview, IEEE T Geosci Remote, 35(3): 675-686. https://doi.org/10.1109/36.581987
  18. Wong, M.S., K.H. Lee, J.E. Nichol, and Z.Q. Li, 2010. Retrieval of Aerosol Optical Thickness Using MODIS 500${\times}$500 m(2), a Study in Hong Kong and the Pearl River Delta Region, IEEE T Geosci Remote, 48: 3318-3327. https://doi.org/10.1109/TGRS.2010.2045124
  19. Zhang, J.L., S.A. Christopher, and B.N. Holben, 2001. Intercomparison of smoke aerosol optical thickness derived from GOES 8 imager and ground-based Sun photometers, J. Geophys Res-Atmos., 106: 7387-7397. https://doi.org/10.1029/2000JD900540

Cited by

  1. A Study on Establishment of Appropriate Observation Time for Estimation of Daily Land Surface Temperature using COMS in Korea Peninsula vol.58, pp.4, 2016, https://doi.org/10.5389/KSAE.2016.58.4.037
  2. Sensitivity Experiment of Surface Reflectance to Error-inducing Variables Based on the GEMS Satellite Observations vol.39, pp.1, 2018, https://doi.org/10.5467/JKESS.2018.39.1.53
  3. 다중선형 회귀모형과 천리안 지면온도를 활용한 토양수분 산정 연구 vol.59, pp.1, 2014, https://doi.org/10.5389/ksae.2017.59.1.011