• Title/Summary/Keyword: Channel Design Criteria

Search Result 61, Processing Time 0.026 seconds

Proper Conditions of Structure to Prevent Eddy Creation in Cooling Water Intake Canal of Stream Power Plant (화력발전소 냉각 취수로내의 와류발생 방지를 위한 구조물의 적정조건검토)

  • 조진훈;천만복
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1999.10c
    • /
    • pp.465-472
    • /
    • 1999
  • Hydraulic model tests are performed to find economical and hdrqulically stable design of cooling water intake channel of steam power plant. The result of tests show that the standard distributiion of y-components in the chamber of CWP(circulating Water Pump) are recommended below 3.5 to maintain hydraulic stability, so that this value is considered as the design criteria. Common basin is necessary to improve the hydraulic stability of inflow, however the longer basin does not always improve the hydraulic stability , and the optimal length of basin can be found in some range. From the results the flow stability maintained the best condition when the length of basin is 7.2m. Beside the standard tests the auxiliary tests like edge , baffle, trapezoidal section and increase of pump capacity are carried out based on the optimal condition foudn in the standard tests. From the series of tests the economical and hydraulically stable design of intake channel was proposed.

  • PDF

Design of Cooling Channels of Preburners for Small Liquid Rocket Engines with Computational Flow and Heat Transfer Analysis

  • Moon, In-Sang;Lee, Seon-Mi;Moon, Il-Yoon;Yoo, Jae-Han;Lee, Soo-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.3
    • /
    • pp.233-239
    • /
    • 2011
  • A series of computational analyses was performed to predict the cooling process by the cooling channel of preburners used for kerosene-liquid oxygen staged combustion cycle rocket engines. As an oxygen-rich combustion occurs in the kerosene fueled preburner, it is of great importance to control the wall temperature so that it does not exceed the critical temperature. However, since the heat transfer is proportional to the speed of fluid running inside the channel, the high heat transfer leads to a trade-off of pressure loss. For this reason, it is necessary to establish a certain criteria between the pressure loss and the heat transfer or the wall surface temperature. The design factors of the cooling channel were determined by the computational research, and a test model was manufactured. The test model was used for the hot fire tests to prove the function of the cooling mechanism, among other purposes.

Preliminary conceptual design of a small high-flux multi-purpose LBE cooled fast reactor

  • Xiong, Yangbin;Duan, Chengjie;Zeng, Qin;Ding, Peng;Song, Juqing;Zhou, Junjie;Xu, Jinggang;Yang, Jingchen;Li, Zhifeng
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.3085-3094
    • /
    • 2022
  • The design concept of a Small High-flux Multipurpose LBE(Lead Bismuth Eutectic) cooled Fast Reactor (SHMLFR) was proposed in the paper. The primary cooling system of the reactor is forced circulation, and the fuel element form is arc-plate loaded high enrichment MOX fuel. The core is cylindrical with a flux trap set in the center of the core, which can be used as an irradiation channel. According to the requirements of the core physical design, a series of physical design criteria and constraints were given, and the steady and transient parameters of the reactor were calculated and analyzed. Regarding the thermal and hydraulic phenomena of the reactor, a simplified model was used to conduct a preliminary analysis of the fuel plates at special positions, and the temperature field distribution of the fuel plate with the highest power density under different coolant flow rates was simulated. The results show that the various parameters of SHMLFR meet the requirements and design criteria of the physical design of the core and the thermal design of the reactor. This implies that the conceptual design of SHMLFR is feasible.

UX Design for Digital TV Platform (디지털 TV 플랫폼의 UX 디자인)

  • Yim, Jin-Ho;Lee, Sang-Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.563-568
    • /
    • 2010
  • TV businesses that have brought a competitive structure in terms of price, definition, product design for a long time now are bringing User eXperience (UX) into relief as DTVs come to support broadcast information-related services such as various broadcast channels and Electronic Program Guide(EPG), etc., and playing of multimedia contents like music/videos, etc. This study worked on an evaluation by developing a UI to control easily the various and complex broadcast contents or multimedia contents provided by DTVs. The UI Design for new DTVs was developed based on Function, Flow and Form in the concept of Single ABC (Access, Browser and Control), and the usability test of the developed UI concept along with the UIs of the major DTV products, was done for Channel Managers and the multimedia browsers for 32 users of DTVs in the U.K./U.S., respectively. As a result of the usability test, the new concept of Channel Manager was evaluated high both in the U.K./U.S, while the multimedia browser was evaluated low in the U.S., relatively.

Optimization of InAlAs/InGaAs HEMT Performance for Microwave Frequency Applications and Reliability

  • Gupta, Ritesh;Aggarwal, Sandeep Kumar;Gupta, Mridula;Gupta, R.S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.3
    • /
    • pp.240-249
    • /
    • 2004
  • In the present paper efforts have been made to optimize InAlAs/InGaAs HEMT by enhancing the effective gate voltage ($(V_c-V_off)$) using pulsed doped structure from uniformly doped to delta doped for microwave frequency applications and reliability. The detailed design criteria to select the proper design parameters have also been discussed in detail to exclude parallel conduction without affecting the del ice performance. Then the optimized value of $V_c-V_off$and breakdown voltages corresponding to maximum value of transconductance has been obtained. These values are then used to predict the transconductance and cut-off frequency of the del ice for different channel depths and gate lengths.

Optimal Channel Sensing for Heterogeneous Cognitive Networks: An Analytical Approach

  • Yu, Heejung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.12
    • /
    • pp.2987-3002
    • /
    • 2013
  • The problem of optimal channel sensing in heterogeneous cognitive networks is considered to maximize the system throughput performance. The characteristics of an optimal operating sensing point maximizing the overall system rate are investigated under several rate criteria including the sum rate, the minimum of the primary and secondary rates, and the secondary rate with a guaranteed primary rate. Under the sum rate criterion, it is shown that the loss by imperfect sensing is no greater than half of the sum rate achieved by the perfect time sharing approach in a two user case if the sensing point is optimally designed.

A Study on Decision of Minimum Required Channel Width Considering Ship Types by Fast Time Simulation (배속 시뮬레이션 기반의 선종별 최소 항로 폭에 관한 연구)

  • Kim, Hyun-suk;Lee, Yun-sok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.309-316
    • /
    • 2020
  • Waterway design should prioritize appropriate channel width to ensure preferential safe passage for the arrival and departure of vessels. To calculate the minimum channel width required for safe passage a comprehensive review of several factors is required. These factors include vessel maneuverability, determined by vessel size, type and speed; environmental factors such as wind, tide, and wave action; human factors, including personal experience and operator judgment as well as marine traffic and navigation support facilities for decision making. However, the Korean channel width design standard is based only on vessel length, and requires improvement when compared with the standards of PIANC, USA, and Japan. This study aims to estimate the appropriate channel width required for one-way traffic in a straight channel, considering various vessel and environmental factors, using Fast Time Simulation (FTS). When the wind speed is 25 knots, with a current speed of 2 knots and a normal vessel speed of 10 knots FTS shows that a 150K GT Cruise Ship requires a minimum channel width of 0.67-0.91 the vessel length (L), whereas a 120K TEU Container Ship and a 300K DWT VLCC require 0.79-1.17 and 1.02-1.59, respectively. Such results can be used to calculate the minimum channel width required for safe passage as an improved Korean design standard.

Study on the EMC analysis and test results of the digital channel amplifier considering space Environment (우주환경을 고려한 디지털채널증폭기의 전자파적합성 분석 및 시험 결과에 대한 고찰)

  • Hong, Sang-Pyo;Jin, Byeong-Il;Jin, Bong-Cheol;Seo, Hak-Keum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.755-760
    • /
    • 2013
  • The electromagnetic compatibility and its effects, and the system design considerations in space environment are studied in this paper using Multipator. The system level EMC test results of digital channel amplifier(DCAMP), its affects upon the H/W improving methods regarding its over exceed value of EMC specification are discussed. These analysis values and test results can be used as the criteria for the selection of EMC requirements and of the MILSATCOM system design.

A Study On the Safe Width and Alignment of the Navigational Channel (선박의 안전을 위한 최적 항로배치 및 항로폭 결정에 관한 연구)

  • 김환수
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.1 no.1
    • /
    • pp.9-25
    • /
    • 1995
  • Although the studies carried out in recent years have provied much new information about channel widths and alignment, they are not consistent in their results. In addition, as a result of variations in local condition and type of traffic accommodated, the dimensions of the channel widths vary over a wide range. Therefore, the recommendation made by the maritime engineering organizations over the world, do not offer detailed and decisive optimal design criteria and are all different. It, therefore, was attempted in this paper to draw a decisive guideline on the optimal widths and alignment of the navigational channels, which can be utilized by the port designers at the stage of the planning. The guideline was drawn through the comparison and analysis of the existing guidelines of the U.S.A, Japan and PIANC and simulation experiment. The simulation experiment was carried out using the "Off Line Port and Waterway Design Simulator" to find the optimal dimensions of the widths of the navigational channels. 90 different simulation runs were conducted at the 3 different secenario channels. New guidelines, the result of the study, is expected to be used usefully by the Korean port designers when designing the rapodly developing ports in Korea. in Korea.

  • PDF

Beamforming Optimization for Multiuser Two-Tier Networks

  • Jeong, Young-Min;Quek, Tony Q.S.;Shin, Hyun-Dong
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.327-338
    • /
    • 2011
  • With the incitation to reduce power consumption and the aggressive reuse of spectral resources, there is an inevitable trend towards the deployment of small-cell networks by decomposing a traditional single-tier network into a multi-tier network with very high throughput per network area. However, this cell size reduction increases the complexity of network operation and the severity of cross-tier interference. In this paper, we consider a downlink two-tier network comprising of a multiple-antenna macrocell base station and a single femtocell access point, each serving multiples users with a single antenna. In this scenario, we treat the following beamforming optimization problems: i) Total transmit power minimization problem; ii) mean-square error balancing problem; and iii) interference power minimization problem. In the presence of perfect channel state information (CSI), we formulate the optimization algorithms in a centralized manner and determine the optimal beamformers using standard convex optimization techniques. In addition, we propose semi-decentralized algorithms to overcome the drawback of centralized design by introducing the signal-to-leakage plus noise ratio criteria. Taking into account imperfect CSI for both centralized and semi-decentralized approaches, we also propose robust algorithms tailored by the worst-case design to mitigate the effect of channel uncertainty. Finally, numerical results are presented to validate our proposed algorithms.