• Title/Summary/Keyword: Chamber size effect

Search Result 170, Processing Time 0.027 seconds

Experimental Study on the Effect of Air Chamber Size and Operation Parameters on the Performance of a Hydraulic Ram Pump (압력실의 크기와 운전 조건에 따른 수격펌프의 성능에 대한 실험적 고찰)

  • Ngolle, Enongene Ebong George;Hong, Seong Gu
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.4
    • /
    • pp.55-61
    • /
    • 2019
  • Motor pumps cannot be used in those areas where electricity is not accessible such as remote rural areas in many African countries. Hydraulic ram pump is one of the solutions for supplying water for irrigation or domestic uses. The hydraulic ram pumps are working based on the water hammer effect for pumping without external power or electricity. This study was conducted to investigate the effect of air chamber volume and operation parameters on the performance of the hydraulic ram pump which was assembled with common plumbing parts. The experimental results showed the volume of the air chamber did not affect the performance such as discharge rate and head. When drive heights were 1.7 and 2.35 m, the maximum discharge heads were up to 7 m and 10 m, respectively. When the air chamber volume was 1 L, discharge rates were 0.23 and 2.12 L/min under the drive heights of 1.7 and 2.35 m, respectively. The average energy efficiency of the hydraulic ram pump assembled in this study was about 60% for all the experimental conditions.

Estimation of Bearing Capacity for Open-Ended Pile Considering Soil Plugging (폐색정도를 고려한 개단말뚝의 지지력 산정)

  • 백규호
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.397-404
    • /
    • 2002
  • The bearing capacity of open-ended piles is affected by the degree of soil plugging, which is quantified by the IFR. There is not at present a design criterion for open-ended piles that explicitly considers the effect of IFR on pile load capacity In order to investigate this effect, model pile load tests using a calibration chamber were conducted on instrumented open-ended piles. The results of these tests show that the IFR increases with increasing relative density and increasing horizontal stress of soils. The unit base and shaft resistances decrease with increasing IFR. Based on the results of the model pile tests, new empirical relations for base load capacity and shaft load capacity of open-ended piles are proposed. In order to check the accuracy of predictions made with the proposed equations, the equations were applied to the full-scale pile load test preformed in this study, Based on the comparisons with the pile load test results, the proposed equations appear to produce satisfactory predictions.

  • PDF

The Effect of Impinging Land Size on Diesel Spray Behavior in OSKA Type Combustion Chamber (OSKA형 연소실에서 충돌면크기변화가 디젤분무거동에 미치는 영향)

  • 임덕경;박권하
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.18-26
    • /
    • 2001
  • OSKA engine was developed to remove the dense core of injection sprays. The engine uses impinging spray on a small pip, which spray after impinging is broken into smaller drops and disperses into fee space in chamber. In this paper the pip size is analyzed to give more dispersion of spray and fuel vapor. The gas phase is modelled by the Eulerian continuum conservation equations of mass, momentum, energy and fuel vapour fraction. The liquid phase is modelled following the discrete droplet model approach in Lagrangian form, and the droplet wall interaction is modelled as a function of the velocity normal to impaction lands. The droplet distributions, vapor fractions and gas flows are analyzed for various injection pressure cases. Numerical results indicate that the land diameter of 5.6mm has the best performance of spray dynamics and vaporization in the test sizes.

  • PDF

Deconvolution of Detector Size Effect Using Monte Carlo Simulation (몬데카를로 시뮬레이션을 이용한 검출기의 크기효과 제거)

  • Park, Kwangyl;Yi, Byong-Yong;Young W. Vahc
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.100-104
    • /
    • 2004
  • The detector size effect due to the spatial response of detectors is a critical source of inaccuracy in clinical dosimetry that has been the subject of numerous studies. Conventionally, the detector response kernel contains all the information about the influence that the detector size has on the measured beam profile. Various analytical models for this kernel have been proposed and studied in theoretical and experimental works. Herein, a method to simply determine the detector response kernel using the Monte Carlo simulation and convolution theory has been proposed. Based on this numerical method, the detector response kernel for a Farmer type ion chamber embedded in a water phantom has been obtained. The obtained kernel shows characteristics of both the pre-existing parabolic model proposed by Sibata et al. and the Gaussian model used by Garcia-Vicente et al. From this kernel and deconvolution technique, the detector size effect can be removed from measurements for 6MV, 10${\times}$10 $\textrm{cm}^2$ and 0.5${\times}$10 $\textrm{cm}^2$photon beams. The deconvolved beam profiles are in good agreements with the measurements performed by the film and pin-point ion chamber, with the exception of in the tail legion.

  • PDF

Transient Response Analysis of a Control Valve for CO2 Refrigerant (CO2냉매용 제어밸브의 응답 특성)

  • Kim, Bo Hyun;Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.11-16
    • /
    • 2018
  • Pilot operated control valve for $CO_2$ refrigerant is a valve that can perform various functions according to the user's intention by replacing pilot units, widely used for flow rate, pressure, and temperature control of refrigeration and air conditioning systems. In addition, $CO_2$ refrigerant, that requires high pressure and low critical temperature, can be installed and used in all positions of the refrigeration system, regardless of high or low pressure. In this paper, response characteristics are modeled and analyzed based on behavior of the main piston of the pilot-operated control valve. Although various factors influence operation of the main piston, this paper analyzes the effect of equilibrium pressure depending on valve installation position and application, and inlet and outlet orifice size of the load pressure feedback chamber to determine feedback characteristics of the main piston. As a result, it was possible to quantitatively analyze the effect of change in equilibrium and load pressure feedback chamber flow path size on the change in main piston dynamic and static characteristics.

A Study of Small Radiation Dosimeter by Using Microfilm and Carbon Elecrtode (마이크로필름과 탄소막 전극을 이용한 소형방사선측정기 개발에 관한 연구)

  • 신교철;윤형근
    • Progress in Medical Physics
    • /
    • v.15 no.2
    • /
    • pp.59-62
    • /
    • 2004
  • We developed very small parallel plate radiation detector by using our existing experience of mating radiation dosimeter and capability of analyzing characteristics of dosimeter. The radiation detector was consisted of microfilm and carbon electrode. The detector was parallel plate type of all-filled ionization chamber. The ionization chamber had been fabricated using an acrylic plate for the air cavity and carbon coated microfilm for electrical configuration. The alr gap between two electrodes was 0.48 mm. The diameters of collect electrode and guard electrode were 3.3 mm, 5 mm respectively. The diameter of high voltage electrode was 5 mm. Nominal sensitive volume of the chamber was 0.016 ㎤. The major parameters of the chamber characteristics such as leakage current, reproducibility, dose rate effect, and polarity effect were measured. The experimental results were as followings. Leakage current was 0.1 pA. Standard deviation of reproducibility was less than 0.1%. Dose rate effect was less than 1.5%. Polarity effect was less than 2.4%. These data were comparable to those of commercially available dosimetric system for QA-purpose. As the result, we found that the radiation detector consisting of the ionization chamber, microfilm and carbon electrode, was satisfactory for the purpose of the small field dosimetry in size and characteristics. In the future, We will try to refine the dosimeter for use in very small volume.

  • PDF

Numerical Visualization of Fluid Flow and Filtration Efficiency in Centrifugal Oil Purifier

  • Jung, Ho-Yun;Choi, Yoon-Hwan;Lee, Yeon-Won;Doh, Deog-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.84-91
    • /
    • 2010
  • The centrifugal oil purifier is used in ships for purifying the engine lubrication oil. The momentum needed for the rotation of the cylindrical chamber is obtained by jet injections. The dust particles in the oil are separated by the centrifugal forces moving to the inner wall of the rotating cylindrical chamber body. The dust particles are eliminated when the particles are adsorbed onto the surface of the inner wall of the chamber body. The flow characteristics and the physical behaviours of particles in this centrifugal oil purifier have been investigated numerically and the filtration efficiencies have been evaluated. For the calculations, a commercial code has been used and the SST k-${\omega}$ turbulence model has been adopted. The MRF (Multiple Reference Frame) method has been introduced to consider the rotating effect of the flows. Under various variables, such as particle size, particle density and rotating speed, the filtration efficiencies have been evaluated. It has been verified that the filtration efficiency is increased with the increments of the particle size, the particle density and the rotating speed of the cylindrical chamber.

Separation characteristics of particles in a self-rotating type centrifugal oil purifier

  • Pyo, Young-Seok;Jung, Ho-Yun;Choi, Yoon-Hwan;Doh, Deog-Hee;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.147-153
    • /
    • 2014
  • The centrifugal oil purifier is used in an engine for lubrication and to remove impurities. The momentum needed for the rotation of the cylindrical chamber is obtained by jet injections. An impure particle in the oil is separated by the centrifugal forces moving to the inner wall of the rotating cylindrical chamber body. The dust particles are eliminated when the particles are absorbed onto the surface of the inner wall of the chamber body. The flow characteristics and the physical behaviors of particles in this centrifugal oil purifier were investigated numerically and the filtration efficiencies was evaluated. For calculations, a commercial code is used and the SST (Shear Stress Transport) turbulence model has been adopted. The MFR (Multi Frames of Reference) method is introduced to consider the rotating effect of the flows. Under various variables, such as particle size, particle density and rotating speed, the filtration efficiencies are evaluated. It has been verified that the filtration efficiency is increased with the increments in the particle size, the particle density and the rotating speed of the cylindrical chamber.

The Study on Correction Factor of a Small Scale Reverberation Chamber to Estimate Transmission Loss (소형 잔향실의 확산 음장 보정 계수 측정 연구)

  • Kim, Tae Min;Kim, Da Rae;Kim, Jeung Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.960-965
    • /
    • 2014
  • Transmission loss of specimen is calculated by measuring energy of incident and transmission and using reverberant room of large size. But normal measurement of transmission loss has trouble because it is actually demanded that large area and specimen of certain size is satisfied with condition of diffused sound field. Especially, in case of mechanical component, interested frequency band is mid-frequency band between 500 ~ 2k Hz, and it is used to be available to minimize a reverberation chamber under conditions satisfying acoustic one because production of specimen for transmission loss measurement has limit. But, as in semi-reverberation room, it is difficult to satisfy condition of diffuse sound field and modification factor is applied to complement that. Correction factor when measuring transmission loss using semi-reverberation chamber is required accuracy because it works as main factor determining reliability of reuslts on transmission loss. In this study, it is analyzed that an effect on correction factor based on varying materials and sizes of specimens in order to deduction of it. Also It is confirmed that applied by elicited correction factor with actual railway vehicle's floor has reliability.

  • PDF

Particle Deposition Characteristics with Electrostatic Effect on Semiconductor Wafers (정전효과를 고려한 반도체 웨이퍼의 입자침착 특성)

  • Lee, Kun-Hyung;Chae, Seung-Ki;Moon, Young-June
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.779-785
    • /
    • 2006
  • Particle transport and deposition characteristics on semiconductor wafers inside the chamber were experimentally investigated via a particle generation & deposition system and a wafer surface scanner. Especially the relation between particle size($0.083{\sim}0.495{\mu}m$) and particle deposition velocity with ESA(Electrostatic Attraction) effect was studied. Spot deposition technique with the deposition system using nozzle type outlets of the chamber was newly conducted to derive particle deposition velocity and all experiment results were compared with the previous study and were in a good agreement as well.

  • PDF