• Title/Summary/Keyword: Chamber Monitoring

Search Result 188, Processing Time 0.021 seconds

Estimation of Moisture Content in Comminuted Miscanthus based on the Intensity of Reflected Light

  • Cho, Yongjin;Lee, Dong Hoon
    • Journal of Biosystems Engineering
    • /
    • v.40 no.3
    • /
    • pp.296-304
    • /
    • 2015
  • Purpose: The balance between miscanthus production and its cost effectiveness depends greatly on its moisture content during post processing. The objective of this research was to measure the moisture content using a non-destructive and non-contact methodology for in situ applications. Methods: The moisture content of comminuted miscanthus was controlled using a closed chamber, a humidifier, a precision weigher, and a real-time monitoring software developed in this research. A CMOS sensor equipped with $50{\times}$ magnifier lens was used to capture magnified images of the conditioned materials with moisture content level from 5 to 30%. The hypothesis is that when light is incident on the comminuted particles in an inclined manner, higher moisture content results in light being reflected with a higher intensity. Results: A linear regression analysis for an initiative hypothesis based on general histogram analysis yielded insufficient correlations with low significance level (<0.31) for the determination coefficient. A significant relationship (94% confidence level) was determined at level 108 in a reverse accumulative histogram proposed based on a revised hypothesis. A linear regression model with the value at level 108 in the reverse accumulative histogram for a magnified image as the independent variable and the moisture content of comminuted miscanthus as the dependent variable was proposed as the estimation model. The calibrated linear regression model with a slope of 92.054 and an offset of 32.752 yielded 0.94 for the determination coefficient (RMSE = 0.2%). The validation test showed a significant relationship at the 74% confidence level with RMSE 6.4% (n = 36). Conclusions: To compensate the inconsistent significance between calibration and validation, an estimation model robust against various systematic interferences is necessary. The economic efficiency of miscanthus, which is a promising energy resource, can be improved by the real-time measurement of its crucial material properties.

Qualitative Study on Dietary Practices of Hemodialysis Patients (혈액투석환자의 식생활 실천에 관한 질적 연구)

  • Park, Hee-Jung;Jang, Eun-Young;Cho, Wookyoun
    • Journal of the Korean Society of Food Culture
    • /
    • v.35 no.2
    • /
    • pp.201-214
    • /
    • 2020
  • This study was a qualitative investigation into hemodialysis patients' dietary practices. The purpose of this study was to explore the obstacles and requirements to maintain a recommended diet therapy in hemodialysis patients. Five patients undergoing hemodialysis in the renal chamber of the general hospital were interviewed individually. The interviews were based on an interview guide and analyzed by Giorgi's method of analysis. As a result of this study, five elemental factors and 12 subelemental factors were derived. Derived elements were "difficulty in dietary guidelines", "recognizing necessity of diet therapy", "awareness of importance of diet", "difficulty practicing diet therapy", and "looking for ways to practice diet therapy". Patients not only felt difficulties in practicing dietary guidelines but also recognized the need and importance of diet therapy. Patients seemed to have difficulty practicing meal therapy and eating with their families or others. They were also stressed by the limited selection of dietary components and rapid dietary changes before and after dialysis. However, patients showed a willingness to implement dietary management to improve their quality of life and to practice dietary therapy. In order to improve the practice of dietary management in hemodialysis patients, nutritional education should be focused on long-term dietary habits through continuous education and monitoring, not just one-off education. Moreover, patients should be educated that adherence to dietary control may be less burdensome on their families.

Effects of Red Ginseng on Neonatal Hypoxia-induced Hyperacitivity Phenotype in Rats

  • Kim, Hee-Jin;Joo, So-Hyun;Choi, In-Ha;Kim, Pitna;Kim, Min-Kyoung;Park, Seung-Hwa;Cheong, Jae-Hoon;Shin, Chan-Young
    • Journal of Ginseng Research
    • /
    • v.34 no.1
    • /
    • pp.8-16
    • /
    • 2010
  • Attention deficit hyperactivity disorder (ADHD) affects 4-12% of chool-age children worldwide and is characterized by three core symptoms: hyperactivity, inattention, and impulsivity. Although standard pharmacological treatments, such as methylphenidate and atomoxetine, are available, concerns about drug-induced psychological and cardiovascular problems, as well as growth retardation and sleep disturbances, highlight the continuing need for new therapeutic interventions. Using a neonatal hypoxia-induced hyperactivity model in rats, the potential positive role that oral administration of red ginseng extract may have in relation to the hyperactive phenotype was investigated. Hypoxia was induced in 2-day-old male Sprague-Dawley (SD) rat pups by placing them in a nitrogen chamber for 15 min. The neonatal hypoxia-induced rats showed a significant increase in hyperactivity phenotype, such as increased movement duration, movement distance, and rearing frequency, which was determined by monitoring their spontaneous locomotor activity using the Ethovision video tracking system. One week of oral treatment with red ginseng extract decreased the hyperactivity phenotype of the neonatal hypoxia-induced rats and increased the locomotor activity of the control rats. In the neonatal hypoxia-induced rats, expression of the norepinephrine transporter in the forebrain was increased, and red ginseng treatment partially prevented its up-regulation, while increasing its level in the control rats. Taken together, these results suggest that red ginseng extract decreased the neonatal hypoxia-induced hyperactivity phenotype, although it increased locomotor activity in normal animals.

Sampling Efficiency of Organic Vapor Passive Samplers by Diffusive Length (확산길이에 따른 수동식 유기용제 시료채취기의 시료채취성능에 관한 연구)

  • Lee, Byung-Kyu;Jang, Jae-Kil;Jeong, Jee-Yeon
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.6
    • /
    • pp.500-509
    • /
    • 2009
  • Passive samplers have been used for many years for the sampling of organic vapors in work environment atmospheres. Currently, all passive samplers used in domestic occupational monitoring are foreign products. This study was performed to evaluate variable parameters for the development of passive organic samplers, which include the geometry of the device and diffusive length for the sampler design. Four prototype diffusive lengths; A-1(4.5 mm), A-2(7.0 mm), A-3(9.5 mm), A-4(12.0 mm) were tested for adsorption performances to a chemical mixture (benzene, toluene, trichloroethylene, and n-hexane) according to the US-OSHA's evaluation protocol. A dynamic vapor exposure chamber developed and verified by related research was used for this study. The results of study are as follows. The results in terms of sampling rate and recommended sampling time test indicate that the most suitable model was A-3 (9.5 mm diffusive lengths on both sides) for passive sampler design in time weighted average (TWA) assessment. Sampling rates of this A-3 model were 45.8, 41.5, 41.4, and 40.3 ml/min for benzene, toluene, trichloroethylene, and n-hexane, respectively. The A-3 models were tested on reverse diffusion and conditions of low humidity air (35% RH) and low concentrations (0.2 times of TLV). These conditions had no affect on the diffusion capacity of samplers. In conclusion, the most suitable design parameters of passive sampler are: 1) Geometry and structure - 25 mm diameter and 490 $mm^2$ cross sectional area of diffusion face with cylindrical form of two-sided opposite diffusion direction; 2) Diffusive length - 9.5 mm in both faces; 3) Amount of adsorbent - 300 mg of coconut shell charcoal; 4) Wind screen - using nylon net filters (11 ${\mu}m$ pore size).

Implementation of Integration Control System Based on Smart for Moving Welfare Medical Device Disinfection (이동식 복지용구 소독을 위한 스마트 기반의 통합제어시스템 구현)

  • Hwang, Gi-Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2251-2258
    • /
    • 2014
  • In this paper, an integrated control system for removable welfare equipment disinfection is implemented. The integrated control system consisted of a hydrogen peroxide vapor supply control circuit, a sterilization chamber control circuit using low vacuum, and a washing control circuit using microbubble. A Smart-phone based remote control and monitoring system is implemented to monitor the operating status and communication status for the integrated control system. An experiment is set up to evaluate the performance of the integrated control system. The experiment result confirms that signal and operation status can transmit and receive within the control circuit. The integrated control system shows good performance in terms of sensor interface, communication state and control. In future research, the proposed control system should deploy to an actual system for trial test to prove its performance.

A Study for Adopting the Temperature Control Unit on Memory Device Tester Based on Principle of Thermoelectric Semiconductor (열전소자 원리를 이용한 부품 Tester용 온도공급 장치 연구 (메모리 Device Tester용 온도제어장치 도입을 위한 연구))

  • Kim, Sun-Ju;Hong, Chul-Ho;Shin, Dong-Uk;Seo, Seong-Bum;Lee, Moo-Jea
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.414-416
    • /
    • 2003
  • As environmental conditions for memory products are increasingly high speed/high density, adopting diverse system configuration, it's more and more difficult for current component tester to adopt the actual condition of field application. If system test screening is realized in component level, test coverage failure can be made more secured in the initial stage, evaluation cost can be reduced and the effectiveness of investment for the facility can be maximized. Based on the above background, component automatic system tester was developed and showed off satisfactory results per each memory device family. In this paper, component quality stabilization strategy and cost saving for tester investment through future Quality monitoring and application to mass production will be presented.

  • PDF

A Review on the Carbon Exchange Estimation in Fruit Orchard (과수 재배지의 탄소 수지 평가 연구 동향)

  • Choi, Eun Jung;Suh, Sang Uk;Jeong, Hyun Cheol;Lee, Jong Sik;Kim, Gun Yeob;So, Kyu Ho
    • Journal of Climate Change Research
    • /
    • v.5 no.4
    • /
    • pp.339-348
    • /
    • 2014
  • Agro-ecosystem plays an important role in the mitigation of atmospheric $CO_2$ concentration through photosynthesis and soil carbon fixation. The perennial crops have capacity of carbon accumulation because they have lived for years in the same position. Carbon dioxide fixation occurs in the fruit orchard by photosynthesis and soil carbon sequestration. The objectives of this review are to introduce the fruit orchard as a carbon dioxide sink and to summarize the methods that measure $CO_2$ flux in the orchard. There are three difference methods (chamber, biomass, and eddy covariance method) to measure $CO_2$ exchanges on sites. However, there is no standard method suitable for fruit cultivation condition in Korea. Thus the standard method have to be developed in order to exactly estimate the carbon accumulation. In foreign studies, the carbon assessments were conducted in apple, peach, olive, grape orchard and so on. On the other hand the estimation of $CO_2$ exchange was carried out for apple and mandarine orchard in Korea. According to these results, fruit orchard is a $CO_2$ sink even though amount of carbon accumulation is smaller than the forest. To introduce certainly fruit orchard as greenhouse gas sink, long-term monitoring and further study have to be conducted under each planting condition.

Investigation on ground displacements induced by excavation of overlapping twin shield tunnels

  • Qi, Weiqiang;Yang, Zhiyong;Jiang, Yusheng;Yang, Xing;Shao, Xiaokang;An, Hongbin
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.531-546
    • /
    • 2022
  • Ground displacements caused by the construction of overlapping twin shield tunnels with small turning radius are complex, especially under special geological conditions of construction. To investigate the ground displacements caused due to shield machines in the unique calcareous sand layers in Israel for the first time and determine the main factors affecting the ground displacements, field monitoring, laboratory geological analysis, theoretical calculations, and parameter studies were adopted. By using rod extensometers, inclinometers, total stations, and automatic segment-displacement monitors, subsurface tunneling-induced displacement, surface settlement, and displacement of the down-track tunnel segments caused by the construction of an up-track tunnel were analyzed. The up-track tunnel and the down-track tunnel pass through different stratum, resulting in different construction parameters and ground displacements. The laws of variation of thrust and torque, soil pressure in the chamber, excavated soil quantity, synchronous grouting pressure, and grout volume of the two tunnels from parallel to fully overlapping orientations were compared. The thrust and torque of the shield in the fine sand are larger than those in the Kurkar layer, and the grouting amount in fine sand is unstable. According to fuzzy statistics and Gaussian curve fitting of the shield tunneling speed, the tunneling speed in the Kurkar stratum is twice that in the fine-sand stratum.

Feasibility Test of Flat-Type Faraday Cup for Ultrahigh-Dose-Rate Transmission Proton Beam Therapy

  • Sang-il Pak;Sungkoo Cho;Seohyeon An;Seonghoon Jeong;Dongho Shin;Youngkyung Lim;Jong Hwi Jeong;Haksoo Kim;Se Byeong Lee
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.108-113
    • /
    • 2022
  • Purpose: Proton therapy has been used for optimal cancer treatment by adapting its Bragg-peak characteristics. Recently, a tissue-sparing effect was introduced in ultrahigh-dose-rate (FLASH) radiation; the high-energy transmission proton beam is considered in proton FLASH therapy. In measuring high-energy/ultrahigh-dose-rate proton beam, Faraday Cup is considered as a dose-rate-independent measurement device, which has been widely studied. In this paper, the feasibility of the simply designed Faraday Cup (Poor Man's Faraday Cup, PMFC) for transmission proton FLASH therapy is investigated. Methods: In general, Faraday cups were used in the measurement of charged particles. The simply designed Faraday Cup and Advanced Markus ion chamber were used for high-energy proton beam measurement in this study. Results: The PMFC shows an acceptable performance, including accuracy in general dosimetric tests. The PMFC has a linear response to the dose and dose rate. The proton fluence was decreased with the increase of depth until the depth was near the proton beam range. Regarding secondary particles backscatter from PMFC, the effect was negligible. Conclusions: In this study, we performed an experiment to investigate the feasibility of PMFC for measuring high-energy proton beams. The PMFC can be used as a beam stopper and secondary monitoring system for transmission proton beam FLASH therapy.

Machine Vision Platform for High-Precision Detection of Disease VOC Biomarkers Using Colorimetric MOF-Based Gas Sensor Array (비색 MOF 가스센서 어레이 기반 고정밀 질환 VOCs 바이오마커 검출을 위한 머신비전 플랫폼)

  • Junyeong Lee;Seungyun Oh;Dongmin Kim;Young Wung Kim;Jungseok Heo;Dae-Sik Lee
    • Journal of Sensor Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.112-116
    • /
    • 2024
  • Gas-sensor technology for volatile organic compounds (VOC) biomarker detection offers significant advantages for noninvasive diagnostics, including rapid response time and low operational costs, exhibiting promising potential for disease diagnosis. Colorimetric gas sensors, which enable intuitive analysis of gas concentrations through changes in color, present additional benefits for the development of personal diagnostic kits. However, the traditional method of visually monitoring these sensors can limit quantitative analysis and consistency in detection threshold evaluation, potentially affecting diagnostic accuracy. To address this, we developed a machine vision platform based on metal-organic framework (MOF) for colorimetric gas sensor arrays, designed to accurately detect disease-related VOC biomarkers. This platform integrates a CMOS camera module, gas chamber, and colorimetric MOF sensor jig to quantitatively assess color changes. A specialized machine vision algorithm accurately identifies the color-change Region of Interest (ROI) from the captured images and monitors the color trends. Performance evaluation was conducted through experiments using a platform with four types of low-concentration standard gases. A limit-of-detection (LoD) at 100 ppb level was observed. This approach significantly enhances the potential for non-invasive and accurate disease diagnosis by detecting low-concentration VOC biomarkers and offers a novel diagnostic tool.