• 제목/요약/키워드: Challenge Stress

검색결과 183건 처리시간 0.028초

Spray Dried Animal Plasma as an Alternative to Antibiotics in Weanling Pigs - A Review -

  • Torrallardona, David
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권1호
    • /
    • pp.131-148
    • /
    • 2010
  • Piglet health at weaning is compromised due to several stress factors. Following the ban of antibiotic growth promoters new alternatives are required to control these problems. This paper reviews the evidence available for the use of spray dried animal plasma (SDAP) as an alternative to antibiotics in weaning pigs. Data from 75 trials in 43 publications involving over 12,000 piglets (mean values) have been used to calculate the performance responses of piglets according to several factors including SDAP origin, protein source from the control diet being replaced, dose of inclusion, age and weight of the piglets at weaning, sanitary conditions and simultaneous use or not of medication. Although the use of SDAP of all origins results in positive responses, it appears that plasma from porcine origin has the highest efficacy. This could be explained by the specificity of its IgG against porcine pathogens. During the first week post-weaning the response to plasma appears to increase with the inclusion dose, although over the two-week pre-starter period an optimal inclusion level of 4-8% is suggested. SDAP improves feed efficiency more markedly when the piglets are challenged with an experimental infection or when feed does not contain medication, which could be indicative of a lower expenditure of energy and nutrients to build an immune response against the challenge. There is evidence supporting that SDAP IgG and other bioactive substances therein prevent the binding of pathogens to the gut wall and reduce the incidence of diarrhoea in the post-weaning phase. Overall, plasma can be postulated as an excellent alternative to in-feed antimicrobials for piglets in the post-weaning phase.

Crack growth prediction and cohesive zone modeling of single crystal aluminum-a molecular dynamics study

  • Sutrakar, Vijay Kumar;Subramanya, N.;Mahapatra, D. Roy
    • Advances in nano research
    • /
    • 제3권3호
    • /
    • pp.143-168
    • /
    • 2015
  • Initiation of crack and its growth simulation requires accurate model of traction - separation law. Accurate modeling of traction-separation law remains always a great challenge. Atomistic simulations based prediction has great potential in arriving at accurate traction-separation law. The present paper is aimed at establishing a method to address the above problem. A method for traction-separation law prediction via utilizing atomistic simulations data has been proposed. In this direction, firstly, a simpler approach of common neighbor analysis (CNA) for the prediction of crack growth has been proposed and results have been compared with previously used approach of threshold potential energy. Next, a scheme for prediction of crack speed has been demonstrated based on the stable crack growth criteria. Also, an algorithm has been proposed that utilizes a variable relaxation time period for the computation of crack growth, accurate stress behavior, and traction-separation atomistic law. An understanding has been established for the generation of smoother traction-separation law (including the effect of free surface) from a huge amount of raw atomistic data. A new curve fit has also been proposed for predicting traction-separation data generated from the molecular dynamics simulations. The proposed traction-separation law has also been compared with the polynomial and exponential model used earlier for the prediction of traction-separation law for the bulk materials.

THE CLASSIFICATION SYSTEM OF RIVER HEALTH FOR THE ENVIRONMENTAL WATER QUALITY MANAGEMENT

  • Carolyn G. Palmer;Jang, Suk-Hwan
    • Water Engineering Research
    • /
    • 제3권4호
    • /
    • pp.259-267
    • /
    • 2002
  • South Africa has developed a policy and law that calls and provides for the equitable and sustainable use of water resources. Sustainable resource use is dependent on effective resource protection. Rivers are the most important freshwater resources in the country, and there is a focus on developing and applying methods to quantify what rivers need in terms of flow and water quality. These quantified and descriptive objectives are then related to specified levels of ecological health in a classification system. This paper provides an overview of an integrated and systematic methodology, where, fer each river, and each river reach, the natural condition and the present ecological condition are described, and a level/class of ecosystem health is selected. The class will define long term management goals. This procedure requires each ecosystem component to be quantified, starting with the abiotic template. A modified flow regime is modelled for each ecosystem health class, and the resultant fluvial geomorphology and hydraulic habitats are described. Then the water chemistry is described, and the water quality changes that are likely to occur as a consequence of altered flows are predicted. Finally, the responses to the stress imposed on the biota (fish, invertebrates and vegetation) by modified flow and water quality are predicted. All of the predicted responses are translated into descriptive and/or quantitative management objectives. The paper concludes with the recognition of active method development, and the enormous challenge of applying the methods, implementing the law, and achieving river protection and sustainable resource-use.

  • PDF

Direct Fabrication of a-Si:H Thin Film Transistor Arrays on Flexible Substrates: Critical Challenges and Enabling Solutions

  • O'Rourke, Shawn M.;Loy, Douglas E.;Moyer, Curt;Bawolek, Edward J.;Ageno, Scott K.;O'Brien, Barry P.;Marrs, Michael;Bottesch, Dirk;Dailey, Jeff;Naujokaitis, Rob;Kaminski, Jann P.;Allee, David R.;Venugopal, Sameer M.;Haq, Jesmin;Colaneri, Nicholas;Raupp, Gregory B.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2008년도 International Meeting on Information Display
    • /
    • pp.1459-1462
    • /
    • 2008
  • In this paper we describe solutions to address critical challenges in direct fabrication of amorphous silicon thin film transistor (TFTs) arrays for active matrix flexible displays. For all flexible substrates a manufacturable handling protocol in automated display-scale equipment is required. For metal foil substrates the principal challenges are planarization and electrical isolation, and management of stress (CTE mismatch) during TFT fabrication. For plastic substrates the principal challenge is dimensional instability management.

  • PDF

AZ31 판재의 부풀림 성형 특성 (Blow forming characteristics of AZ31 sheet)

  • 권용남;이영선;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 제5회 박판성형 SYMPOSIUM
    • /
    • pp.99-102
    • /
    • 2006
  • In the present study, the blow forming characteristics of AZ31 sheet was investigated to test the feasibility of the practical application of wrought Mg alloys. Mg alloys have drawn a huge attention in the field of transportation and consumer electronics industries since it is the lightest alloy which could be industrially applicable. Most Mg alloy components have been fabricated by casting method. However, there have been a lot of research activities on the wrought alloys and their plastic forming process recently. Shallow cups for the small electronics cases have been stamped with warm die system. However, some technical issues will challenge Mg forming when large parts are considered with warm die system over $200^{\circ}C$. Most of all, thermal expansion of die system will deteriorate a die accuracy. On the other hand, blow forming does not have a problem with inaccuracy with die system. In this study, tensile tests were followed by blow forming at various temperature and pressure. AZ31 sheet showed a superplastic deformation behavior with extensive grain boundary sliding at the temperature above $300^{\circ}C$. However, the deformation behavior was likely to differ depending on stress condition.

  • PDF

Genomic Organization, Tissue Distribution and Developmental Expression of Glyceraldehyde 3-Phosphate Dehydrogenase Isoforms in Mud Loach Misgurnus mizolepis

  • Lee, Sang Yoon;Kim, Dong Soo;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • 제16권4호
    • /
    • pp.291-301
    • /
    • 2013
  • The genomic organization, tissue distribution, and developmental expression of two paralogous GAPDH isoforms were characterized in the mud loach Misgurnus mizolepis (Cypriniformes). The mud loach gapdh isoform genes (mlgapdh-1 and mlgapdh-2) had different exon-intron organizations: 12 exons in mlgapdh-1 (spanning to 4.88 kb) and 11 in mlgapdh-2 (11.78 kb), including a non-translated exon 1 in each isoform. Southern blot hybridization suggested that the mud loach might possess the two copies of mlgapdh-1 and a single copy of mlgapdh-2. The mlgapdh-1 transcript levels are high in tissues requiring high energy flow, such as skeletal muscle and heart, whereas mlgapdh-2 is expressed abundantly in the brain. Both isoforms are differentially regulated during embryonic and larval development, during which their expression is upregulated with the progress of development. Lipopolysaccharide challenge preferentially induced mlgapdh-2 transcripts in the liver. Therefore, the two isoforms have diversified functionally; mlgapdh-1 is associated more closely with energy metabolism, while mlgapdh-2 is related more to stress/immune responses, in the mud loach.

Global technologies for the removal of water scaling & water recovery - Department of Energy (DOE) USA

  • Ramakrishna, Chilakala;Thriveni, Thenepalli;Whan, Ahn Ji
    • 에너지공학
    • /
    • 제27권1호
    • /
    • pp.21-32
    • /
    • 2018
  • In this paper, we reported the current technologies of water scaling removal and also water recovery from the flue gases, which are funded by Department of Energy (DOE), USA. Globally, water resources are limited due to the climate change. The potential impacts of climate change is food and water shortages. In the $21^{st}$ century, water shortages and pollution are expected to become more acute as populations grow and concentrate in cities. At present, the water stress increases over 62.0 ~ 75.8% of total water basin area and decreases over 19.7 ~ 29.0%. Many renewable energy sources demand secure water resources. Water is critical for successful climate change mitigation, as many efforts to reduce greenhouse gas emissions depend on reliable access to water resources. Water hardness is one of the major challenge to coal power plants. Department of energy (DOE) funded and encouraged for the development of advanced technologies for the removal of hardness of water (scaling) and also water recovery from the flue gases from coal power plants.

3D Auxetic Pyramid 구조의 최적화 연구 (A Study on Optimization of 3D Auxetic Pyramid Structure)

  • 김규영;김수호;윤기원
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제6회(2017년)
    • /
    • pp.241-250
    • /
    • 2017
  • Auxetic is a structure that behave as negative Poisson's ratio. It is known for high mechanical property like energy absorption and destruction toughness so far. In this paper, we aimed to design auxetic structure which has small internal energy when force is applied and high NPR and over 50N/mm stiffness by using optimization method. We defined length(L), thickness(t), angle(${\theta}_1$, ${\theta}_2$) as design factors and also von-Mises stress, NPR, stiffness as reaction factors. We used Box-Behnken method and conducted 4factors - 3levels experiment design. We also analyzed each models by using CSD_EPLAST, Edison program, and did extra analysis for more accurate results. Finally, we found out the optimal design factors which is satisfied aimed value and increased reliability through factor analysis and validity verification.

  • PDF

YlaC is an Extracytoplasmic Function (ECF) Sigma Factor Contributing to Hydrogen Peroxide Resistance in Bacillus subtilis

  • Ryu Han-Bong;Shin In-Ji;Yim Hyung-Soon;Kang Sa-Ouk
    • Journal of Microbiology
    • /
    • 제44권2호
    • /
    • pp.206-216
    • /
    • 2006
  • In this study, we have attempted to characterize the functions of YlaC and YlaD encoded by ylaC and ylaD genes in Bacillus subtilis. The GUS reporter gene, driven by the yla operon promoter, was expressed primarily during the late exponential and early stationary phase, and its expression increased as the result of hydrogen peroxide treatment. Northern and Western blot analyses revealed that the level of ylaC transcripts and YlaC increased as the result of challenge with hydrogen peroxide. A YlaC-overexpressing strain evidenced hydrogen peroxide resistance and a three-fold higher peroxidase activity as compared with a deletion mutant. YlaC-overexpressing and YlaD-disrupted strains evidenced higher sporulation rates than were observed in the YlaC-disrupted and YlaD-overexpressing strains. Analyses of the results of native polyacrylamide gel electrophoresis of recombinant YlaC and YlaD indicated that interaction between YlaC and YlaD was regulated by the redox state of YlaD in vitro. Collectively, the results of this study appear to suggest that YlaC regulated by the YlaD redox state, contribute to oxidative stress resistance in B. subtilis.

Numerical study of airfoil thickness effects on the performance of J-shaped straight blade vertical axis wind turbine

  • Zamani, Mahdi;Maghrebi, Mohammad Javad;Moshizi, Sajad A.
    • Wind and Structures
    • /
    • 제22권5호
    • /
    • pp.595-616
    • /
    • 2016
  • Providing high starting torque and efficiency simultaneously is a significant challenge for vertical axis wind turbines (VAWTs). In this paper, a new approach is studied in order to modify VAWTs performance and cogging torque. In this approach, J-shaped profiles are exploited in the structure of blades by means of eliminating the pressure side of airfoil from the maximum thickness toward the trailing edge. This new profile is a new type of VAWT airfoil using the lift and drag forces, thereby yielding a better performance at low TSRs. To simulate the fluid flow of the VAWT along with J-shaped profiles originated from NACA0018 and NACA0030, a two-dimensional computational analysis is conducted. The Reynolds Averaged Navier-Stokes (RANS) equations are closed using the two-equation Shear Stress Transport (SST) turbulence model. The main objective of the study is to investigate the effects of J-shaped straight blade thickness on the performance characteristics of VAWT. The results obtained indicate that opting for the higher thickness in J-shaped profiles for the blade sections leads the performance and cogging torque of VAWT to enhance dramatically.