Browse > Article

YlaC is an Extracytoplasmic Function (ECF) Sigma Factor Contributing to Hydrogen Peroxide Resistance in Bacillus subtilis  

Ryu Han-Bong (School of Biological Sciences, and Institute of Microbiology, Seoul National University)
Shin In-Ji (School of Biological Sciences, and Institute of Microbiology, Seoul National University)
Yim Hyung-Soon (School of Biological Sciences, and Institute of Microbiology, Seoul National University)
Kang Sa-Ouk (School of Biological Sciences, and Institute of Microbiology, Seoul National University)
Publication Information
Journal of Microbiology / v.44, no.2, 2006 , pp. 206-216 More about this Journal
Abstract
In this study, we have attempted to characterize the functions of YlaC and YlaD encoded by ylaC and ylaD genes in Bacillus subtilis. The GUS reporter gene, driven by the yla operon promoter, was expressed primarily during the late exponential and early stationary phase, and its expression increased as the result of hydrogen peroxide treatment. Northern and Western blot analyses revealed that the level of ylaC transcripts and YlaC increased as the result of challenge with hydrogen peroxide. A YlaC-overexpressing strain evidenced hydrogen peroxide resistance and a three-fold higher peroxidase activity as compared with a deletion mutant. YlaC-overexpressing and YlaD-disrupted strains evidenced higher sporulation rates than were observed in the YlaC-disrupted and YlaD-overexpressing strains. Analyses of the results of native polyacrylamide gel electrophoresis of recombinant YlaC and YlaD indicated that interaction between YlaC and YlaD was regulated by the redox state of YlaD in vitro. Collectively, the results of this study appear to suggest that YlaC regulated by the YlaD redox state, contribute to oxidative stress resistance in B. subtilis.
Keywords
Bacillus subtilis; ylaC; ylaD; ECF; anti-sigma; hydrogen peroxide;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
Times Cited By SCOPUS : 5
연도 인용수 순위
1 Bsat, N., L. Chen, and J.D. Helmann. 1996. Mutation of the Bacillus subtilis alkyl hydroperoxide reductase (ahpCF) operon reveals compensatory interactions among hydrogen peroxide stress genes. J. Bacteriol. 178, 6579-6586   DOI
2 Dowds, B.C.A., P. Murphy, D.J. McConnell, and K.M. Devine. 1987. Relationship among oxidative stress, growth cycle, and sporulation in Bacillus subtilis. J. Bacteriol. 169, 5771-5775   DOI
3 Huang, X., A. Decatur, A. Sorokin, and J.D. Helmann. 1997. The Bacillus subtilis sigma(X) protein is an extracytoplasmic function sigma factor contributing to survival at high-temperature stress. J. Bacteriol. 179, 2915-2921   DOI
4 Huang, X., K.L. Fredrick and J.D. Helmann. 1998. Promoter recognition by Bacillus subtilis sigmaW: autoregulation and partial overlap with the sigX regulon. J. Bacteriol. 180, 3765-3770
5 Kang, J.G., M.S.B. Paget, Y.J. Seok, M.Y. Hahn, J.B. Bae, J.S. Hahn, C. Kleanthous, M.J. Buttner, and J.H. Roe. 1999. RsrA, an anti-sigma factor regulated by redox change. EMBO J. 18, 4292-4298   DOI   ScienceOn
6 Karow, M.L. and P.J. Piggot. 1995. Construction of gusA transcriptional fusion vectors for Bacillus subtilis and their utilization for studies of spore formation. Gene 163, 69-74   DOI   ScienceOn
7 Li, W., A.R. Bottrill, M.J. Bibb, M.J. Buttner, and C. Kleanthous. 2003. The role of zinc in the disulphide stress-regulated anti-sigma factor RsrA form Steptomyces coelicolor. J. Mol. Biol. 333, 461-472   DOI   ScienceOn
8 Missiakas, D. and S. Raina. 1998. The extracytoplasmic function sigma factors: role and regulation. Mol. Microbiol. 28, 1059-1066   DOI   ScienceOn
9 Newman, J.D., J.R. Anthony, and T.J. Donohue. 2001. The importance of zinc-binding to the function of Rhodobacter sphaeroides ChrR as an anti-sigma factor. J. Mol. Biol. 313, 485-499   DOI   ScienceOn
10 Paget, M.S.B., V. Molle, G. Cohen, Y. Aharonowitz, and M.J. Buttner. 2001. Defining the disulphide stress response in Streptomyces coelicolor A3(2): identification of the $\sigma^R$ regulon. Mol. Microbiol. 42, 1007-1020   DOI   ScienceOn
11 Reinhold Bruckner. 1992. A series of shuttle vectors for Bacillus subtilis and Escherichia coli. Gene 122, 187-192   DOI   ScienceOn
12 Paget, M.S.B., J.G. Kang, J.H. Roe, and M.J. Butter. 1998. $\sigma^R$, an RNA polymerase sigma factor that modulates expression of the thioredoxin system in response to oxidative stress in Streptomyces coelicolor A3(2). EMBO J. 17, 5776-5   DOI   ScienceOn
13 Paget, M.S.B., J.B. Bae, M.Y. Hahn, W. Li, C. Kleanthous, J.H. Roe, and M.J. Buttner. 2001. Mutational analysis of RsrA, zinc-binding anti-sigma factor with a thioldisulphide redox switch. Mol. Microbiol. 39, 1036-1047   DOI   ScienceOn
14 Phillips, Z.E.V. and M.A. Strauch. 2002. Bacillus subtilis sporulation and stationary phase gene expression. Cell Mol. Life Sci. 59, 392-402   DOI
15 Braun, V. 1997. Surface signaling: novel transcription initiation mechanism starting from the cell surface. Arch. Microbiol. 167, 325-331   DOI
16 Stragier, P. and R. Losick. 1996. Molecular genetics of sporulation in Bacillus subtilis. Annu. Rev. Genet. 30, 297-341   DOI   ScienceOn
17 Cole, S.T., R. Brosch, J. Parkhill, T. Garnier, C. Churcher, D. Harris, S. V. Gordon, K. Eiglmeier, S. Gas, C. E. Barry, F. Tekaia, K. Badcock, D. Basham, D. Brown, T. Chillingworth, R. Connor, R. Davies, K. Devlin, T. Feltwell, S. Gentles, N. Hamlin, S. Holroyd, T. Hornsby, K. Jagels, A. Krogh, J. Mclean, S. Moule, L. Murphy, K. Oliver, J. Osborne, M. A. Quail, M.A. Rajandream, J. Rogers, S. Rutter, K. Seeger, J. Skelton, R. Squares, S. Squares, J. E. Sulston, K. Taylor, S. Whitehead, and B. G. Barrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537-544   DOI   ScienceOn
18 Shin, I., H.B. Ryu, H.S. Yim, and S.O. Kang. 2005. Cytochrome $c_{550}$ is related to initiation of sporulation in Bacillus subtilis. J. Microbiol. 43, 244-250   과학기술학회마을
19 Haldenwang, W.G. 1995. The sigma factor of Bacillus subtilis. Microbiol. Rev. 59, 1-30
20 Liesegang, H., K. Lemke, R.A. Siddiqui, and H.G. Schlegel. 1993. Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34. J. Bacteriol. 175, 767-778   DOI
21 Huang, X. and J.D. Helmann. 1998. Identification of target promoters for the Bacillus subtilis sigmaX factor using a consensus-directed search. J. Mol. Biol. 279, 165-173   DOI   ScienceOn
22 Matsumoto, T., K. Nakanishi, K. Asai, and Y. Sadaie. 2005. Transcriptional analysis of the ylaABCD operon of Bacillus subtilis encoding a sigma factor of extracytoplasmic function family. Genes Genet. Syst. 80, 385-393   DOI   ScienceOn
23 Bol, D.K. and R.E. Yasbin. 1990. Characterization of an inducible oxidative stress system in Bacillus subtilis. J. Bacteriol. 172, 3503-3506   DOI
24 Brown, K.L. and K.T. Hughes. 1995. The role of anti-sigma factors in gene regulation. Mol. Microbiol. 16, 397-404   DOI   ScienceOn
25 Harwood, C.R. and S.M. Cutting. 1990. Molecular Biological Methods for Bacillus
26 Helmann, J.D. 1999. Anti-sigma factors. Curr. Opin. Microbiol. 2, 135-141   DOI   ScienceOn
27 Bae, J.B., J.H. Park, M.Y. Hahn, M.S. Kim, and J.H. Roe. 2004. Redox-dependent changes in RsrA, an anti-sigma factor in Streptomyces coelicolor: zinc release and disulfide bond formation. J. Mol. Biol. 335, 425-435   DOI   ScienceOn
28 Antelmann, H., S. Engelmann, R. Schmid, and M. Hecker. 1996. General and oxidative stress response in Bacillus subtilis: cloning, expression, and mutation of the alkyl hydroperoxide reductase operon. J. Bacteriol. 178, 6571- 6578   DOI
29 Scharf C., S. Riethdorf, H. Ernst, S. Engelmann, U. Volker, and M. Hecker. 1998. Thioredoxin is an essential protein induced by multiple stresses in Bacillus subtilis. J. Bacteriol. 180, 1869-1877
30 Van Dessel, W., L. Van Mellaert, N. Geukens, E. Lammertyn, and J. Anne. 2004. Isolation of high quality RNA from Streptomyces. J. Microbiol. Methods 58, 135-137   DOI   ScienceOn
31 Nunoshiba, T., F. Obata, A.C. Boss, S. Oikawa, T. Mori, S. Kawanishi, and K. Yamamoto. 1999. Role of iron and superoxide for generation of hydroxyl radical, oxidative DNA lesions, and mutagenesis in Escherichia coli. J. Biol. Chem. 274, 34832-34837   DOI   ScienceOn
32 Lonetto, M.A., K.L. Brown, K.E. Rudd, and M.J. Buttner. 1994. Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase sigma factors involved in the regulation of extracytoplasmic function. Proc. Natl. Acad. Sci. USA 91, 7573-7577
33 Kenney, T.J. and C.P. Jr. Moran. 1987. Organization and regulation of an operon that encodes a sporulationessential sigma factor in Bacillus subtilis. J. Bacteriol. 169, 3329-3339   DOI
34 Chen, L., L. Keramati, and J.D. Helmann. 1995. Coordinate regulation of Bacillus subtilis peroxide stress genes by hydrogen peroxide and metal ions. Proc. Natl. Acad. Sci. USA 92, 8190-8194
35 Gorham, H.C., S.J. McGowan, P.R.H. Robson, and D.A. Hodgson. 1996. Light-induced carotenogenesis in Myxococcus xanthus: light-dependent membrane sequestration of ECF sigma factor CarQ by anti-sigma factor CarR. Mol. Microbiol. 19, 171-186   DOI
36 Chen, L. and J.D. Helmann. 1995. Bacillus subtilis MrgA is a Dps (PexB) homologue: evidence for metalloregulation of an oxidative-stress gene. Mol. Microbiol. 18, 295-300   DOI   ScienceOn
37 Dowds, B.C.A. 1994. The oxidative stress response in Bacillus subtilis. FEMS Microbiol. Lett. 124, 255-263   DOI
38 Horsburgh, M.J. and A. Moir. 1999. $\sigma^M$, an ECF RNA polymerase sigma factor of Bacillus subtilis 168, is essential for growth and survival in high concentration of salt. Mol. Microbiol. 32, 41-50   DOI   ScienceOn
39 Yoshimura, M., K. Asai, Y. Sadaie, and H. Yoshikawa. 2004. Interaction of Bacillus subtilis extracytoplasmic function(ECF) sigma factors with the N-terminal regions of their potential anti-sigma factors. Microbiology 150, 591-599   DOI   ScienceOn
40 Kunst, F., N. Ogasawara, I. Moszer, A.M. Albertini, G. Alloni, V. Azevedo, M.G. Bertero, P. Bessieres, A. Bolotin, S. Borchert, R. Borriss, L. Boursier, A. Brans, M. Braun, S.C. Brignell, S. Bron, S. Brouillet, C.V. Bruschi, B. Caldwell, V. Capuano, N.M. Carter, S.K. Choi, J.J. Codani, I.F. Connerton, A. Danchin, et al. 1997. The complete genome sequence of the Gram-positive Bacillus subtilis. Nature 390, 249-256   DOI   ScienceOn
41 Dubnau, D. and R. Davidoff-Abelson. 1971. Fate of transforming DNA following uptake by competent Bacillus subtilis, I. Formation and properties of the donor-recipient complex. J. Mol. Biol. 56, 209-221   DOI
42 Li, W., C.E. Stevenson, N. Burton, P. Jakimowicz, M.S.B. Paget, M.J. Buttner, D.M. Lawson, and C. Kleanthous. 2002. Identification and structure of the anti-sigma factor-binding domain of the disulphide-stress regulated sigma factor sigma(R) from Streptomyces coelicolor. J. Mol. Biol. 323, 225-236   DOI   ScienceOn
43 Milhaud, P. and G. Balassa. 1973. Biochemical genetics of bacterial sporulation. IV. Sequential development of resistances to chemical and physical agents during sporulation of Bacillus subtilis. Mol. Gen. Genet. 125, 241-250   DOI