• 제목/요약/키워드: Ceramide.

검색결과 239건 처리시간 0.031초

Adenophorae Radix 뿌리 추출물에 의한 Keratinocyte의 분화 및 피부장벽 기능에 대한 연구 (Study on Keratinocyte Differentiation and Skin Barrier Function of Adeonphorae Radix Root Extracts)

  • 남개원
    • 대한화장품학회지
    • /
    • 제43권4호
    • /
    • pp.329-335
    • /
    • 2017
  • Triterpenoid, saponin, 전분 등이 함유되어 있는 것으로 알려진 Adenophorae radix (A. radix)의 뿌리 추출물을 이용하여 각질형성세포의 분화와 피부장벽기능에 대한 연구를 수행하였다. A. radix의 뿌리 추출물은 CV-1 세포를 이용하여 $PPAR{\alpha}$ 발현을 살펴본 결과, Wy-14,643 $0.5-1.0{\mu}M$ 수준의 발현양을 나타내었다. 인체 각질형성 세포주(HaCaT)와 각질형성세포(nomal human keratinocyte)에 대한 각질형성능(cornified envelop formation, CE)은 대조군에 비해 통계적으로 유의한 증가를 보였다. HaCaT 세포에 A. radix의 뿌리 추출물 처리하였을 때, transglutaminase (TGase-1)의 유의적 증가를 보였다. A. radix의 뿌리 추출물을 함유한 간단한 화장품 제형을 약 2주간에 걸쳐 임상시험을 실시한 결과, TEWL의 유의적 감소와 수분량의 증가를 살펴볼 수 있었으며, 하박 내측에서 지질을 추출하여 세라마이드를 분석한 결과 통계적으로 유의한 증가를 관찰할 수 있었다. 이를 통하여 A. radix의 뿌리 추출물을 건조피부나 아토피 등의 피부질환과 관련된 질환의 예방 및 치료제로 사용될 수 있을 것이다.

양격산화탕(凉膈散火湯)이 Atopy 피부염(皮膚炎)에 미치는 영향(影響) (Yangkyuksanhwa-tang effected to Atopic Dermatitis)

  • 윤보현;박성식
    • 사상체질의학회지
    • /
    • 제16권2호
    • /
    • pp.84-98
    • /
    • 2004
  • 1. Objectives Yangkyuksanhwa-tang is used mush in pruritus and dermatopathy of Soyangin. It is suggested this prescription is effective on atopy dermatitis. 2. Methods For observation of Yangkyuksanhwa-tang effected to atopic dermatitis, extract of Yangkyuksanhwa-tang has been dispensed to the stratum corneum of epithelium in dermatome of murine after making damage to its defense mechanism against fat and causing atopic dermatitis artificially. After that, the change in outer dermatome and minute mechanism of epidermis, the change of eosinophil, the change in distribution of soybean agglutinin, the change in distribution of fat and ceramide in stratum corneum, the change in inflammation in dermatome, the change of cell accrementition and apoptosis, and the effect on anaphylaxis and Staphylococcus aureus was observed. 3. Results After administration of Yangkyuksanhwa-tang, severe skin damage such as eczema and psoriasis, that was observed in the case of atopy dermatitis, was decreased and the increase of eosinophil in serum was suppressed. Lipid lamella was recovered, so epidermal demage was relieved. The distribution of HSP70 in the outer skin was decreased. Yangkyuksanhwa-tang suppressed activation of $NF-_{\kappa}B$ p50, induced CD11/18b not to be generated, and suppressed inflammatory response of skin. Anaphylaxis and groth of Staphylococcus aureus was suppressed. 4. Conclusions Yangkyuksanhwa-tang decreased skin damage of atopy dermatitis. It has antibiosis about Staphylococcus aureus, it can be medicinal substances on atopy dermatitis. In addition, it is possible that it can be medicinal substances on regional skin allergy.

  • PDF

Rab25 Deficiency Perturbs Epidermal Differentiation and Skin Barrier Function in Mice

  • Jeong, Haengdueng;Lim, Kyung-Min;Goldenring, James R.;Nam, Ki Taek
    • Biomolecules & Therapeutics
    • /
    • 제27권6호
    • /
    • pp.553-561
    • /
    • 2019
  • Rab25, a member of the Rab11 small GTPase family, is central to achieving cellular polarity in epithelial tissues. Rab25 is highly expressed in epithelial cells of various tissues including breast, vagina, cervix, the gastrointestinal tract, and skin. Rab25 plays key roles in tumorigenesis, mainly by regulating epithelial differentiation and proliferation. However, its role in skin physiology is relatively unknown. In this study, we demonstrated that Rab25 knock-out (KO) mice show a skin barrier dysfunction with high trans-epidermal water loss and low cutaneous hydration. To examine this observation, we investigated the histology and epidermal differentiation markers of the skin in Rab25 KO mice. Rab25 KO increased cell proliferation at the basal layer of epidermis, whereas the supra-basal layer remained unaffected. Ceramide, which is a critical lipid component for skin barrier function, was not altered by Rab25 KO in its distribution or amount, as determined by immunohistochemistry. Notably, levels of epidermal differentiation markers, including loricrin, involucrin, and keratins (5, 14, 1, and 10) increased prominently in Rab25 KO mice. In line with this, depletion of Rab25 with single hairpin RNA increased the expression of differentiation markers in a human keratinocyte cell line, HaCaT. Transcriptomic analysis of the skin revealed increased expression of genes associated with skin development, epidermal development, and keratinocyte differentiation in Rab25 KO mice. Collectively, these results suggested that Rab25 is involved in the regulation of epidermal differentiation and proliferation.

Links between accelerated replicative cellular senescence and down-regulation of SPHK1 transcription

  • Kim, Min Kyung;Lee, Wooseong;Yoon, Gang-Ho;Chang, Eun-Ju;Choi, Sun-Cheol;Kim, Seong Who
    • BMB Reports
    • /
    • 제52권3호
    • /
    • pp.220-225
    • /
    • 2019
  • We have identified a mechanism to diminish the proliferative capacity of cells during cell expansion using human adipose-derived stromal cells (hAD-SCs) as a model of replicative senescence. hAD-SCs of high-passage numbers exhibited a reduced proliferative capacity with accelerated cellular senescence. Levels of key bioactive sphingolipids were significantly increased in these senescent hAD-SCs. Notably, the transcription of sphingosine kinase 1 (SPHK1) was down-regulated in hAD-SCs at high-passage numbers. SPHK1 knockdown as well as inhibition of its enzymatic activity impeded the proliferation of hAD-SCs, with concomitant induction of cellular senescence and accumulation of sphingolipids, as seen in high-passage cells. SPHK1 knockdown-accelerated cellular senescence was attenuated by co-treatment with sphingosine-1-phosphate and an inhibitor of ceramide synthesis, fumonisin $B_1$, but not by treatment with either one alone. Together, these results suggest that transcriptional down-regulation of SPHK1 is a critical inducer of altered sphingolipid profiles and enhances replicative senescence during multiple rounds of cell division.

조협 (皂莢, Gleditsiae Fructus) n-hexane 추출물이 NC/Nga Tnd mouse의 아토피 피부염에 미치는 영향 (The Effects of Gleditsiae Fructus n-hexane Extract on Atopic Dermatitis of NC/Nga Tnd Mouse)

  • 구은진;김윤희
    • 대한한방소아과학회지
    • /
    • 제35권1호
    • /
    • pp.76-103
    • /
    • 2021
  • Objectives This study was designed to examine the effect of Gleditsiae Fructus n-hexane (GSF_Hx) on two different groups (on the LPS-induced activation of Raw264.7 cells in vitro, and on the DNCB-induced activation of atopic dermatitis NC/Nga Tnd mice in vivo) to find index components and active components of Gleditsiae Fructus. Methods GSF_Hx was analyzed by HPLC profiling and confirmed echinocystic acid (EA), oleanolic acid (OA) as index components of Gleditsiae Fructus. Using GSF_Hx, EA, OA, we investigated IL-6, TNF-α, NO production by ELISA analysis and evaluated manifestations of MAPKs transcription factors and NF-κB p65 translocation by western blotting. During In vivo study, atopic dermatitis was induced on NC/Nga Tnd mice by DNCB and administered GSF_Hx, EA, OA orally, and checked skin lesions and measured skin clinical score. Serum IgE level, Th1 and Th2 cytokines secretion and modulating molecular mediators and immune cells in the spleenocyte culture supernatant, PBMCs, ALN and dorsal skin were also measured by real-time PCR. Then, skin rash was evaluated and mast cell distribution was verified by H&E and toluidine blue staining on dorsal skin. Results It is possible that GSF_Hx, EA and OA reduce inflammation and allergic response of atopic dermatitis by suppressing Th1 and Th2 cytokines secretion and modulating molecular mediators and immune cells. They also had moisturizing effect by raising vitality of ceramide in dorsal skin of atopic dermatitis NC/Nga Tnd mice. However, EA particularly had better overall activity data than OA, that EA could be a more effective active component of Gleditsiae Fructus than OA. Conclusions Based on the inflammatory reduction property with moisturizing effect, GSF_Hx may play a role in effective treatment for atopic dermatitis.

각질형성세포에서 Fisetin의 피부장벽 기능 개선 및 항노화 효능 검증 (Roles of Fisetin on Skin Barrier Function and Anti-aging in Epidermal Keratinocyte)

  • 이경하;김완일
    • 대한화장품학회지
    • /
    • 제46권4호
    • /
    • pp.391-401
    • /
    • 2020
  • 플라보노이드(flavonoid)는 식물 등의 대사체에서 유래한 폴리페놀 계열의 화합물이며, 다양한 인체생리작용을 조절할 수 있는 것으로 알려져 있다. 이중 3,3',3',7-tetrahydroxyflavone (fisetin)은 다양한 과일과 채소에서 발견되며, 최근 노쇠용해(senolytic) 활성을 통해 특정 조직의 기능을 회복시킨다는 것이 알려졌다. 본 연구에서는 인간 표피 각질세포를 대상으로 하여 fisetin의 피부장벽 유전자 발현 조절 및 항노화 효능을 분석하였다. Fisetin은 말단소립 역전사효소(telomerase)의 활성을 증가시켰으며, CDKN1B 유전자의 발현을 감소시켰다. 또한 피부장벽을 구성하는 주요 유전자인 KRT1, FLG, IVL, DSP의 발현을 증가시켰으며, 세라마이드 합성효소의 일종인 CerS3, CerS4 유전자의 발현을 증가시켰다. 이러한 결과는 fisetin의 효능이 노쇠용해에 국한되지 않고 인간 각질세포의 다양한 생리학적 조절에도 관여함을 보여준다. 따라서 fisetin은 화장품 및 의약품 등의 생리활성 조절물질로 활용될 수 있다고 사료된다.

Long-term administration of red ginseng non-saponin fraction rescues the loss of skeletal muscle mass and strength associated with aging in mice

  • Cho, Da-Eun;Choi, Gwang-Muk;Lee, Yong-Seok;Hong, Joon-Pyo;Yeom, Mijung;Lee, Bombi;Hahm, Dae-Hyun
    • Journal of Ginseng Research
    • /
    • 제46권5호
    • /
    • pp.657-665
    • /
    • 2022
  • Background: Sarcopenia is a new and emerging risk factor aggravating the quality of life of elderly population. Because Korean Red Ginseng (RG) is known to have a great effect on relieving fatigue and enhancing physical performance, it is invaluable to examine its potential as an anti-sarcopenic drug. Methods: Anti-sarcopenic effect of non-saponin fraction of Korean Red Ginseng (RGNS) was evaluated in C2C12 myoblasts treated with C2-ceramide to induce senescence phenotypes, and 22-month-old mice fed with chow diet containing 2% RGNS (w/w) for 4 further months. Results: The RGNS treatment significantly alleviated cellular senescence indicated by intracellular lipid accumulation, increased amount of lysosomal β-galactosidase, and reduced proliferative capacity in C2C12 myoblasts. This effect was not observed with saponin fraction. In an aged mouse, the 4-month-RGNS diet significantly improved aging-associated loss of muscle mass and strength, assessed by the weights of hindlimb skeletal muscles such as tibialis anterior (TA), extensor digitorum longus (EDL), gastrocnemius (GN) and soleus (SOL), and the cross-sectional area (CSA) of SOL muscle, and the behaviors in grip strength and hanging wire tests, respectively. During the same period, an aging-associated shift of fast-to slow-twitch muscle in SOL muscle was also retarded by the RGNS treatment. Conclusions: These findings suggested that the long-term diet of RGNS significantly prevented aging-associated muscle atrophy and reduced physical performance, and thus RGNS has a strong potential to be developed as a drug that prevents or improves sarcopenia.

Lipidomic profiling of Skipjack tuna (Katsuwonus pelamis) by ultrahigh-performance liquid chromatography coupled to high resolution mass spectrometry

  • Hu, Lingping;Hu, Zhiheng;Chin, Yaoxian;Yu, Haixia;Xu, Jianhong;Zhou, Jianwei;Liu, Donghong;Kang, Mengli;Hu, Yaqin
    • Fisheries and Aquatic Sciences
    • /
    • 제25권3호
    • /
    • pp.140-150
    • /
    • 2022
  • A method of ultrahigh performance liquid chromatography coupled to high resolution mass spectrometry (UPLC-HRMS) was established for characterization of the lipid profile of Skipjack tuna. Over 300 lipid molecular species were identified through cross-acquisition in both positive and negative ion mode. Phospholipids (PLs) were dominant in Skipjack tuna. Lysophosphatidylethanolamine (LPE), phosphatidylethanolamine (PE), lysophosphatidylcholine (LPC) and phosphatidylcholine (PC) were the main lipid molecular species in PLs, accounting for 89.24% of the total PLs. The ratio of sphingolipids (SLs) and glycerolipids (GLs) were considerable, accounting for 12.30% and 13.60% of the total lipids respectively. Ceramide (Cer) was the main lipid molecular species of SLs, accounting for 64.96% of total SLs, followed by sphingomyelin (SM), accounting for 25.45% of total SLs. Ether diglycerides (ether DG) were the main lipid molecular species of GLs (97.83%). The main fatty acids (FAs) are unsaturated fatty acids (UFAs) in Skipjack tuna. Besides, a new FAs class branched fatty acid esters of hydroxy fatty acids (FAHFA) was detected, together with the FA. The active lipids identified in this study can be used to evaluate the nutritional value of Skipjack tuna.

Potential Role of Dietary Salmon Nasal Cartilage Proteoglycan on UVB-Induced Photoaged Skin

  • Hae Ran Lee;Seong-Min Hong;Kyohee Cho;Seon Hyeok Kim;Eunji Ko;Eunyoo Lee;Hyun Jin Kim;Se Yeong Jeon;Seon Gil Do;Sun Yeou Kim
    • Biomolecules & Therapeutics
    • /
    • 제32권2호
    • /
    • pp.249-260
    • /
    • 2024
  • New supplements with preventive effects against skin photodamage are receiving increasing attention. This study evaluated the anti-photoaging effects of salmon nasal cartilage proteoglycan (SPG), acting as a functional material for skin health. We administered SPG to in vitro and in vivo models exposed to ultraviolet B (UVB) radiation and assessed its moisturizing and anti-wrinkle effects on dorsal mouse skin and keratinocytes and dermal fibroblasts cell lines. These results showed that SPG restored the levels of filaggrin, involucrin, and AQP3 in the epidermis of UVB-irradiated dorsal skin and keratinocytes, thereby enhancing the keratinization process and water flow. Additionally, SPG treatment increased the levels of hyaluronan and skin ceramide, the major components of intercellular lipids in the epidermis. Furthermore, SPG treatment significantly increased the levels of collagen and procollagen type 1 by down-regulating matrix metalloproteinase 1, which play a crucial role in skin fibroblasts, in both in vitro and in vivo models. In addition, SPG strongly inhibited mitogen-activated protein kinase (MAPKs) signaling, the including extracellular signal-regulated kinase, c-Jun N-terminal kinase (JNK), and p38. These findings suggest that dietary SPG may be an attractive functional food for preventing UVB-induced photoaging. And this SPG product may provide its best benefit when treating several signs of skin photoaging.

Comprehensive Lipid Profiling Recapitulates Enhanced Lipolysis and Fatty Acid Metabolism in Intimal Foamy Macrophages From Murine Atherosclerotic Aorta

  • Jae Won Seo;Kyu Seong Park;Gwang Bin Lee;Sang-eun Park;Jae-Hoon Choi;Myeong Hee Moon
    • IMMUNE NETWORK
    • /
    • 제23권4호
    • /
    • pp.28.1-28.20
    • /
    • 2023
  • Lipid accumulation in macrophages is a prominent phenomenon observed in atherosclerosis. Previously, intimal foamy macrophages (FM) showed decreased inflammatory gene expression compared to intimal non-foamy macrophages (NFM). Since reprogramming of lipid metabolism in macrophages affects immunological functions, lipid profiling of intimal macrophages appears to be important for understanding the phenotypic changes of macrophages in atherosclerotic lesions. While lipidomic analysis has been performed in atherosclerotic aortic tissues and cultured macrophages, direct lipid profiling has not been performed in primary aortic macrophages from atherosclerotic aortas. We utilized nanoflow ultrahigh-performance liquid chromatography-tandem mass spectrometry to provide comprehensive lipid profiles of intimal non-foamy and foamy macrophages and adventitial macrophages from Ldlr-/- mouse aortas. We also analyzed the gene expression of each macrophage type related to lipid metabolism. FM showed increased levels of fatty acids, cholesterol esters, phosphatidylcholine, lysophosphatidylcholine, phosphatidylinositol, and sphingomyelin. However, phosphatidylethanolamine, phosphatidic acid, and ceramide levels were decreased in FM compared to those in NFM. Interestingly, FM showed decreased triacylglycerol (TG) levels. Expressions of lipolysis-related genes including Pnpla2 and Lpl were markedly increased but expressions of Lpin2 and Dgat1 related to TG synthesis were decreased in FM. Analysis of transcriptome and lipidome data revealed differences in the regulation of each lipid metabolic pathway in aortic macrophages. These comprehensive lipidomic data could clarify the phenotypes of macrophages in the atherosclerotic aorta.