Browse > Article
http://dx.doi.org/10.15230/SCSK.2020.46.4.391

Roles of Fisetin on Skin Barrier Function and Anti-aging in Epidermal Keratinocyte  

Lee, Kyung-Ha (Department of Cosmetic Science and Technology, Daegu-Haany University)
Kim, Wanil (Department of Cosmetic Science and Technology, Daegu-Haany University)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.46, no.4, 2020 , pp. 391-401 More about this Journal
Abstract
Flavonoids are polyphenolic compounds derived from plants metabolites and are known to be capable of controlling various human physiological functions. Among them, fisetin (3,3', 3', 7-tetrahydroxyflavone) is found in various fruits and vegetables, and it has been recently known to restore the function of certain tissues through senolytic activity. In this study, targeting human epidermal keratinocytes, control of skin barrier genes and antioxidant efficacy of fisetin were analyzed. Fisetin increased the activity of telomerase and decreased the expression of CDKN1B. In addition, it increased the expression of KRT1, FLG, IVL, and DSP, which are main genes that make up the skin barrier. The fisetin also increased the expression of CerS3 and CerS4 genes, which are forms of ceramide synthases. These results show that the efficacy of fisetin is not limited as senolytics but is also involved in various physiological regulation of human keratinocytes. Therefore, we consider that fisetin could be used as an active ingredient in cosmetics and pharmaceuticals.
Keywords
fisetin; senolytics; keratinocyte; skin barrier; anti-aging;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Martins, H. Vieira, H. Gaspar, and S. Santos, Marketed marine natural products in the pharmaceutical and cosmeceutical industries: tips for success, Mar Drugs, 12(2), 1066 (2014).   DOI
2 P. L. Gupta, M. Rajput, T. Oza, U. Trivedi, and G. Sanghvi, Eminence of microbial products in cosmetic industry, Nat Prod Bioprospect, 9(4), 267 (2019).   DOI
3 N. Khan, D. N. Syed, N. Ahmad, and H. Mukhtar, Fisetin: a dietary antioxidant for health promotion, Antioxid Redox Signal, 19(2), 151 (2013).   DOI
4 W. Li, L. Qin, R. Feng, G. Hu, H. Sun, Y. He, and R. Zhang, Emerging senolytic agents derived from natural products, Mech Ageing Dev, 181, 1 (2019).   DOI
5 Y. Arai, S. Watanabe, M. Kimira, K. Shimoi, R. Mochizuki, and N. Kinae, Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration, J Nutr, 130(9), 2243 (2000).   DOI
6 K. Sundarraj, A. Raghunath, and E. Perumal, A review on the chemotherapeutic potential of fisetin: In vitro evidences, Biomed Pharmacother, 97, 928 (2018).   DOI
7 Y. Zhu, E. J. Doornebal, T. Pirtskhalava, N. Giorgadze, M. Wentworth, H. Fuhrmann-Stroissnigg, L. J. Niedernhofer, P. D. Robbins, T. Tchkonia, and J. L. Kirkland, New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463, Aging (Albany NY), 9(3), 955 (2017).   DOI
8 K. Ishige, D. Schubert, and Y. Sagara, Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms, Free Radic Biol Med, 30(4), 433 (2001).   DOI
9 Z. S. Markovic, S. V. Mentus, and J. M. Dimitric Markovic, Electrochemical and density functional theory study on the reactivity of fisetin and its radicals: implications on in vitro antioxidant activity, J Phys Chem A, 113(51), 14170 (2009).   DOI
10 Y. S. Touil, J. Seguin, D. Scherman, and G. G. Chabot, Improved antiangiogenic and antitumour activity of the combination of the natural flavonoid fisetin and cyclophosphamide in Lewis lung carcinomabearing mice, Cancer Chemother Pharmacol, 68(2), 445 (2011).   DOI
11 N. Ravichandran, G. Suresh, B. Ramesh, and G. V. Siva, Fisetin, a novel flavonol attenuates benzo(a) pyrene-induced lung carcinogenesis in Swiss albino mice, Food Chem Toxicol, 49(5), 1141 (2011).   DOI
12 N. Khan, M. Asim, F. Afaq, M. Abu Zaid, and H. Mukhtar, A novel dietary flavonoid fisetin inhibits androgen receptor signaling and tumor growth in athymic nude mice, Cancer Res, 68(20), 8555 (2008).   DOI
13 P. Maher, T. Akaishi, and K. Abe, Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory, Proc Natl Acad Sci U S A, 103(44), 16568 (2006).   DOI
14 D. N. Syed, F. Afaq, N. Maddodi, J. J. Johnson, S. Sarfaraz, A. Ahmad, V. Setaluri, and H. Mukhtar, Inhibition of human melanoma cell growth by the dietary flavonoid fisetin is associated with disruption of Wnt/beta-catenin signaling and decreased Mitf levels, J Invest Dermatol, 131(6), 1291 (2011).   DOI
15 A. L. Slusher, J. J. Kim, and A. T. Ludlow, The Role of Alternative RNA Splicing in the Regulation of hTERT, Telomerase, and Telomeres: Implications for Cancer Therapeutics, Cancers (Basel), 12(6), (2020).
16 J. W. Shay and W. E. Wright, Telomeres and telomerase in normal and cancer stem cells, FEBS Lett, 584(17), 3819 (2010).   DOI
17 C. B. Harley, Telomerase is not an oncogene, Oncogene, 21(4), 494 (2002).   DOI
18 J. W. Shay and W. E. Wright, Senescence and immortalization: role of telomeres and telomerase, Carcinogenesis, 26(5), 867 (2005).   DOI
19 P. M. Elias, Skin barrier function, Curr Allergy Asthma Rep, 8(4), 299 (2008).   DOI
20 I. R. Scott and C. R. Harding, Filaggrin breakdown to water binding compounds during development of the rat stratum corneum is controlled by the water activity of the environment, Dev Biol, 115(1), 84 (1986).   DOI
21 Y. Sagara, J. Vanhnasy, and P. Maher, Induction of PC12 cell differentiation by flavonoids is dependent upon extracellular signal-regulated kinase activation, J Neurochem, 90(5), 1144 (2004).   DOI
22 M. S. Shon, R. H. Kim, O. J. Kwon, S. S. Roh, and G. N. Kim, Beneficial role and function of fisetin in skin health via regulation of the CCN2/TGF-beta signaling pathway, Food Sci Biotechnol, 25(Suppl 1), 133 (2016).   DOI
23 M. Kimira, Y. Arai, K. Shimoi, and S. Watanabe, Japanese intake of flavonoids and isoflavonoids from foods, J Epidemiol, 8(3), 168 (1998).   DOI
24 H. C. Pal, R. D. Baxter, K. M. Hunt, J. Agarwal, C. A. Elmets, M. Athar, and F. Afaq, Fisetin, a phytochemical, potentiates sorafenib-induced apoptosis and abrogates tumor growth in athymic nude mice implanted with BRAF-mutated melanoma cells, Oncotarget, 6(29), 28296 (2015).   DOI
25 A. Sabarwal, R. Agarwal, and R. P. Singh, Fisetin inhibits cellular proliferation and induces mitochondriadependent apoptosis in human gastric cancer cells, Mol Carcinog, 56(2), 499 (2017).   DOI
26 W. Kim and J. W. Shay, Long-range telomere regulation of gene expression: Telomere looping and telomere position effect over long distances (TPE-OLD), Differentiation, 99, 1 (2018).   DOI
27 I. Flores, M. L. Cayuela, and M. A. Blasco, Effects of telomerase and telomere length on epidermal stem cell behavior, Science, 309(5738), 1253 (2005).   DOI
28 N. Liu, Y. Yin, H. Wang, Z. Zhou, X. Sheng, H. Fu, R. Guo, H. Wang, J. Yang, P. Gong, W. Ning, Z. Ju, Y. Liu, and L. Liu, Telomere dysfunction impairs epidermal stem cell specification and differentiation by disrupting BMP/pSmad/P63 signaling, PLoS Genet, 15(9), e1008368 (2019).   DOI
29 C. N. Palmer, A. D. Irvine, A. Terron-Kwiatkowski, Y. Zhao, H. Liao, S. P. Lee, D. R. Goudie, A. Sandilands, L. E. Campbell, F. J. Smith, G. M. O'Regan, R. M. Watson, J. E. Cecil, S. J. Bale, J. G. Compton, J. J. DiGiovanna, P. Fleckman, S. Lewis-Jones, G. Arseculeratne, A. Sergeant, C. S. Munro, B. El Houate, K. McElreavey, L. B. Halkjaer, H. Bisgaard, S. Mukhopadhyay, and W. H. McLean, Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis, Nat Genet, 38(4), 441 (2006).   DOI
30 B. E. Kim, D. Y. Leung, M. Boguniewicz, and M. D. Howell, Loricrin and involucrin expression is down-regulated by Th2 cytokines through STAT-6, Clin Immunol, 126(3), 332 (2008).   DOI
31 Z. Nemes, L. N. Marekov, L. Fesus, and P. M. Steinert, A novel function for transglutaminase 1: attachment of long-chain omega-hydroxyceramides to involucrin by ester bond formation, Proc Natl Acad Sci U S A, 96(15), 8402 (1999).   DOI
32 L. Polivka, S. Hadj-Rabia, E. Bal, S. Leclerc-Mercier, M. Madrange, Y. Hamel, D. Bonnet, S. Mallet, H. Lepidi, C. Ovaert, P. Barbet, C. Dupont, B. Neven, A. Munnich, L. M. Godsel, F. Campeotto, R. Weil, E. Laplantine, S. Marchetto, J. P. Borg, W. I. Weis, J. L. Casanova, A. Puel, K. J. Green, C. Bodemer, and A. Smahi, Epithelial barrier dysfunction in desmoglein-1 deficiency, J Allergy Clin Immunol, 142(2), 702 (2018).   DOI
33 G. Mocsai, K. Gaspar, G. Nagy, B. Irinyi, A. Kapitany, T. Biro, E. Gyimesi, B. Toth, L. Marodi, and A. Szegedi, Severe skin inflammation and filaggrin mutation similarly alter the skin barrier in patients with atopic dermatitis, Br J Dermatol, 170(3), 617 (2014).   DOI
34 H. Green and P. Djian, Consecutive actions of different gene-altering mechanisms in the evolution of involucrin, Mol Biol Evol, 9(6), 977 (1992).
35 D. Garrod and M. Chidgey, Desmosome structure, composition and function, Biochim Biophys Acta, 1778(3), 572 (2008).   DOI
36 A. L. Gartel and S. K. Radhakrishnan, Lost in transcription: p21 repression, mechanisms, and consequences, Cancer Res, 65(10), 3980 (2005).   DOI
37 R. L. Eckert, M. T. Sturniolo, A. M. Broome, M. Ruse and E. A. Rorke, Transglutaminase function in epidermis, J Invest Dermatol, 124(3), 481 (2005).   DOI
38 D. Davis, M. Kannan and B. Wattenberg, Orm/ORMDL proteins: Gate guardians and master regulators, Adv Biol Regul, 70, 3 (2018).   DOI
39 L. Coderch, O. Lopez, A. de la Maza and J. L. Parra, Ceramides and skin function, Am J Clin Dermatol, 4(2), 107 (2003).   DOI
40 M. Rabionet, K. Gorgas and R. Sandhoff, Ceramide synthesis in the epidermis, Biochim Biophys Acta, 1841(3), 422 (2014).   DOI
41 M. Levy and A. H. Futerman, Mammalian ceramide synthases, IUBMB Life, 62(5), 347 (2010).
42 H. J. Cha, C. He, H. Zhao, Y. Dong, I. S. An and S. An, Intercellular and intracellular functions of ceramides and their metabolites in skin (Review), Int J Mol Med, 38(1), 16 (2016).   DOI
43 I. M. Chu, L. Hengst, and J. M. Slingerland, The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy, Nat Rev Cancer, 8(4), 253 (2008).   DOI
44 T. Tsutsui, B. Hesabi, D. S. Moons, P. P. Pandolfi, K. S. Hansel, A. Koff, and H. Kiyokawa, Targeted disruption of CDK4 delays cell cycle entry with enhanced p27(Kip1) activity, Mol Cell Biol, 19(10), 7011 (1999).   DOI
45 N. Khan, F. Afaq, F. H. Khusro, V. Mustafa Adhami, Y. Suh, and H. Mukhtar, Dual inhibition of phosphatidylinositol 3-kinase/Akt and mammalian target of rapamycin signaling in human nonsmall cell lung cancer cells by a dietary flavonoid fisetin, Int J Cancer, 130(7), 1695 (2012).   DOI
46 X. Lu, J. Jung, H. J. Cho, D. Y. Lim, H. S. Lee, H. S. Chun, D. Y. Kwon, and J. H. Park, Fisetin inhibits the activities of cyclin-dependent kinases leading to cell cycle arrest in HT-29 human colon cancer cells, J Nutr, 135(12), 2884 (2005).   DOI
47 R. A. Hiipakka, H. Z. Zhang, W. Dai, Q. Dai, and S. Liao, Structure-activity relationships for inhibition of human 5alpha-reductases by polyphenols, Biochem Pharmacol, 63(6), 1165 (2002).   DOI
48 A. Q. Haddad, V. Venkateswaran, L. Viswanathan, S. J. Teahan, N. E. Fleshner and L. H. Klotz, Novel antiproliferative flavonoids induce cell cycle arrest in human prostate cancer cell lines, Prostate Cancer Prostatic Dis, 9(1), 68 (2006).   DOI
49 I. Murtaza, V. M. Adhami, B. B. Hafeez, M. Saleem, and H. Mukhtar, Fisetin, a natural flavonoid, targets chemoresistant human pancreatic cancer AsPC-1 cells through DR3-mediated inh,ibition of NF-kappaB, Int J Cancer, 125(10), 2465 (2009).   DOI