DOI QR코드

DOI QR Code

Comprehensive Lipid Profiling Recapitulates Enhanced Lipolysis and Fatty Acid Metabolism in Intimal Foamy Macrophages From Murine Atherosclerotic Aorta

  • Jae Won Seo (Department of Chemistry, Yonsei University) ;
  • Kyu Seong Park (Department of Life Science, Research Institute for Natural Sciences, Hanyang Institute of Bioscience and Biotechnology, College of Natural Sciences, Hanyang University) ;
  • Gwang Bin Lee (Department of Chemistry, Yonsei University) ;
  • Sang-eun Park (Department of Life Science, Research Institute for Natural Sciences, Hanyang Institute of Bioscience and Biotechnology, College of Natural Sciences, Hanyang University) ;
  • Jae-Hoon Choi (Department of Life Science, Research Institute for Natural Sciences, Hanyang Institute of Bioscience and Biotechnology, College of Natural Sciences, Hanyang University) ;
  • Myeong Hee Moon (Department of Chemistry, Yonsei University)
  • Received : 2023.02.20
  • Accepted : 2023.05.21
  • Published : 2023.08.31

Abstract

Lipid accumulation in macrophages is a prominent phenomenon observed in atherosclerosis. Previously, intimal foamy macrophages (FM) showed decreased inflammatory gene expression compared to intimal non-foamy macrophages (NFM). Since reprogramming of lipid metabolism in macrophages affects immunological functions, lipid profiling of intimal macrophages appears to be important for understanding the phenotypic changes of macrophages in atherosclerotic lesions. While lipidomic analysis has been performed in atherosclerotic aortic tissues and cultured macrophages, direct lipid profiling has not been performed in primary aortic macrophages from atherosclerotic aortas. We utilized nanoflow ultrahigh-performance liquid chromatography-tandem mass spectrometry to provide comprehensive lipid profiles of intimal non-foamy and foamy macrophages and adventitial macrophages from Ldlr-/- mouse aortas. We also analyzed the gene expression of each macrophage type related to lipid metabolism. FM showed increased levels of fatty acids, cholesterol esters, phosphatidylcholine, lysophosphatidylcholine, phosphatidylinositol, and sphingomyelin. However, phosphatidylethanolamine, phosphatidic acid, and ceramide levels were decreased in FM compared to those in NFM. Interestingly, FM showed decreased triacylglycerol (TG) levels. Expressions of lipolysis-related genes including Pnpla2 and Lpl were markedly increased but expressions of Lpin2 and Dgat1 related to TG synthesis were decreased in FM. Analysis of transcriptome and lipidome data revealed differences in the regulation of each lipid metabolic pathway in aortic macrophages. These comprehensive lipidomic data could clarify the phenotypes of macrophages in the atherosclerotic aorta.

Keywords

Acknowledgement

This work was supported by the National Research Foundation (NRF) of Korea (NRF-2021R1A2C2003171, 2021R1A2C3004586, RS-2023-00207840, and 2016M3A9D5A01952413).

References

  1. VanderLaan PA, Reardon CA, Getz GS. Site specificity of atherosclerosis: site-selective responses to atherosclerotic modulators. Arterioscler Thromb Vasc Biol 2004;24:12-22.  https://doi.org/10.1161/01.ATV.0000105054.43931.f0
  2. Zhang S, Ritter LR, Ibragimov AI. Foam cell formation in atherosclerosis: HDL and macrophage reverse cholesterol transport. Conf Publ 2013;2013:825-835. 
  3. Cole JE, Park I, Ahern DJ, Kassiteridi C, Danso Abeam D, Goddard ME, Green P, Maffia P, Monaco C. Immune cell census in murine atherosclerosis: cytometry by time of flight illuminates vascular myeloid cell diversity. Cardiovasc Res 2018;114:1360-1371.  https://doi.org/10.1093/cvr/cvy109
  4. Glass CK, Witztum JL. Atherosclerosis. The road ahead. Cell 2001;104:503-516.  https://doi.org/10.1016/S0092-8674(01)00238-0
  5. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH Jr, Murphy RC, Raetz CR, Russell DW, Seyama Y, Shaw W, et al. A comprehensive classification system for lipids. J Lipid Res 2005;46:839-861.  https://doi.org/10.1194/jlr.E400004-JLR200
  6. Brouwers JF, Vernooij EA, Tielens AG, van Golde LM. Rapid separation and identification of phosphatidylethanolamine molecular species. J Lipid Res 1999;40:164-169.  https://doi.org/10.1016/S0022-2275(20)33352-6
  7. Wenk MR. The emerging field of lipidomics. Nat Rev Drug Discov 2005;4:594-610.  https://doi.org/10.1038/nrd1776
  8. Stegemann C, Drozdov I, Shalhoub J, Humphries J, Ladroue C, Didangelos A, Baumert M, Allen M, Davies AH, Monaco C, et al. Comparative lipidomics profiling of human atherosclerotic plaques. Circ Cardiovasc Genet 2011;4:232-242.  https://doi.org/10.1161/CIRCGENETICS.110.959098
  9. Wilson PW, Kannel WB. Obesity, diabetes, and risk of cardiovascular disease in the elderly. Am J Geriatr Cardiol 2002;11:119-124.  https://doi.org/10.1111/j.1076-7460.2002.00998.x
  10. Santos CR, Schulze A. Lipid metabolism in cancer. FEBS J 2012;279:2610-2623.  https://doi.org/10.1111/j.1742-4658.2012.08644.x
  11. Lee GB, Lee JC, Moon MH. Plasma lipid profile comparison of five different cancers by nanoflow ultrahigh performance liquid chromatography-tandem mass spectrometry. Anal Chim Acta 2019;1063:117-126.  https://doi.org/10.1016/j.aca.2019.02.021
  12. Remmerie A, Scott CL. Macrophages and lipid metabolism. Cell Immunol 2018;330:27-42.  https://doi.org/10.1016/j.cellimm.2018.01.020
  13. Kim K, Shim D, Lee JS, Zaitsev K, Williams JW, Kim KW, Jang MY, Seok Jang H, Yun TJ, Lee SH, et al. Transcriptome analysis reveals nonfoamy rather than foamy plaque macrophages are proinflammatory in atherosclerotic murine models. Circ Res 2018;123:1127-1142.  https://doi.org/10.1161/CIRCRESAHA.118.312804
  14. Zhang C, Wang Y, Wang F, Wang Z, Lu Y, Xu Y, Wang K, Shen H, Yang P, Li S, et al. Quantitative profiling of glycerophospholipids during mouse and human macrophage differentiation using targeted mass spectrometry. Sci Rep 2017;7:412. 
  15. Hsieh WY, Zhou QD, York AG, Williams KJ, Scumpia PO, Kronenberger EB, Hoi XP, Su B, Chi X, Bui VL, et al. Toll-like receptors induce signal-specific reprogramming of the macrophage lipidome. Cell Metab 2020;32:128-143.e5.  https://doi.org/10.1016/j.cmet.2020.05.003
  16. Paul A, Lydic TA, Hogan R, Goo YH. Cholesterol acceptors regulate the lipidome of macrophage foam cells. Int J Mol Sci 2019;20:3784.
  17. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2019;17:10-12.  https://doi.org/10.14806/ej.17.1.200
  18. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15-21.  https://doi.org/10.1093/bioinformatics/bts635
  19. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput sequencing data. Bioinformatics 2015;31:166-169.  https://doi.org/10.1093/bioinformatics/btu638
  20. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550. 
  21. Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics 2012;28:2184-2185.  https://doi.org/10.1093/bioinformatics/bts356
  22. Castoldi A, Monteiro LB, van Teijlingen Bakker N, Sanin DE, Rana N, Corrado M, Cameron AM, Hassler F, Matsushita M, Caputa G, et al. Triacylglycerol synthesis enhances macrophage inflammatory function. Nat Commun 2020;11:4107. 
  23. Lone AM, Tasken K. Proinflammatory and immunoregulatory roles of eicosanoids in T cells. Front Immunol 2013;4:130. 
  24. Meikle PJ, Wong G, Tsorotes D, Barlow CK, Weir JM, Christopher MJ, MacIntosh GL, Goudey B, Stern L, Kowalczyk A, et al. Plasma lipidomic analysis of stable and unstable coronary artery disease. Arterioscler Thromb Vasc Biol 2011;31:2723-2732.  https://doi.org/10.1161/ATVBAHA.111.234096
  25. Tallima H, El Ridi R. Arachidonic acid: physiological roles and potential health benefits - a review. J Adv Res 2017;11:33-41.  https://doi.org/10.1016/j.jare.2017.11.004
  26. Xu M, Wang X, Li Y, Geng X, Jia X, Zhang L, Yang H. Arachidonic acid metabolism controls macrophage alternative activation through regulating oxidative phosphorylation in PPARγ dependent manner. Front Immunol 2021;12:618501. 
  27. Gaudet P, Livstone MS, Lewis SE, Thomas PD. Phylogenetic-based propagation of functional annotations within the Gene Ontology consortium. Brief Bioinform 2011;12:449-462.  https://doi.org/10.1093/bib/bbr042
  28. Ishimoto K, Nakamura H, Tachibana K, Yamasaki D, Ota A, Hirano KI, Tanaka T, Hamakubo T, Sakai J, Kodama T, et al. Sterol-mediated regulation of human lipin 1 gene expression in hepatoblastoma cells. J Biol Chem 2009;284:22195-22205.  https://doi.org/10.1074/jbc.M109.028753
  29. Eichmann TO, Kumari M, Haas JT, Farese RV Jr, Zimmermann R, Lass A, Zechner R. Studies on the substrate and stereo/regioselectivity of adipose triglyceride lipase, hormone-sensitive lipase, and diacylglycerol-O-acyltransferases. J Biol Chem 2012;287:41446-41457.  https://doi.org/10.1074/jbc.M112.400416
  30. Fruchart-Najib J, Bauge E, Niculescu LS, Pham T, Thomas B, Rommens C, Majd Z, Brewer B, Pennacchio LA, Fruchart JC. Mechanism of triglyceride lowering in mice expressing human apolipoprotein A5. Biochem Biophys Res Commun 2004;319:397-404.  https://doi.org/10.1016/j.bbrc.2004.05.003
  31. Brown MS, Ho YK, Goldstein JL. The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters. J Biol Chem 1980;255:9344-9352.  https://doi.org/10.1016/S0021-9258(19)70568-7
  32. Garuti R, Jones C, Li WP, Michaely P, Herz J, Gerard RD, Cohen JC, Hobbs HH. The modular adaptor protein autosomal recessive hypercholesterolemia (ARH) promotes low density lipoprotein receptor clustering into clathrin-coated pits. J Biol Chem 2005;280:40996-41004.  https://doi.org/10.1074/jbc.M509394200
  33. Liou HL, Dixit SS, Xu S, Tint GS, Stock AM, Lobel P. NPC2, the protein deficient in Niemann-Pick C2 disease, consists of multiple glycoforms that bind a variety of sterols. J Biol Chem 2006;281:36710-36723.  https://doi.org/10.1074/jbc.M608743200
  34. Cadigan KM, Heider JG, Chang TY. Isolation and characterization of Chinese hamster ovary cell mutants deficient in acyl-coenzyme A:cholesterol acyltransferase activity. J Biol Chem 1988;263:274-282. https://doi.org/10.1016/S0021-9258(19)57389-6
  35. Shu H, Peng Y, Hang W, Li N, Zhou N, Wang DW. Emerging roles of ceramide in cardiovascular diseases. Aging Dis 2022;13:232-245.  https://doi.org/10.14336/AD.2021.0710
  36. Leitinger N, Schulman IG. Phenotypic polarization of macrophages in atherosclerosis. Arterioscler Thromb Vasc Biol 2013;33:1120-1126.  https://doi.org/10.1161/ATVBAHA.112.300173
  37. Bi Y, Chen J, Hu F, Liu J, Li M, Zhao L. M2 macrophages as a potential target for antiatherosclerosis treatment. Neural Plast 2019;2019:6724903. 
  38. Huang SC, Everts B, Ivanova Y, O'Sullivan D, Nascimento M, Smith AM, Beatty W, Love-Gregory L, Lam WY, O'Neill CM, et al. Cell-intrinsic lysosomal lipolysis is essential for alternative activation of macrophages. Nat Immunol 2014;15:846-855.  https://doi.org/10.1038/ni.2956
  39. Genoula M, Marin Franco JL, Maio M, Dolotowicz B, Ferreyra M, Milillo MA, Mascarau R, Morana EJ, Palmero D, Matteo M, et al. Fatty acid oxidation of alternatively activated macrophages prevents foam cell formation, but Mycobacterium tuberculosis counteracts this process via HIF-1α activation. PLoS Pathog 2020;16:e1008929. 
  40. Yu XH, Fu YC, Zhang DW, Yin K, Tang CK. Foam cells in atherosclerosis. Clin Chim Acta 2013;424:245-252.  https://doi.org/10.1016/j.cca.2013.06.006
  41. Menegaut L, Jalil A, Thomas C, Masson D. Macrophage fatty acid metabolism and atherosclerosis: the rise of PUFAs. Atherosclerosis 2019;291:52-61.  https://doi.org/10.1016/j.atherosclerosis.2019.10.002
  42. Grygiel-Gorniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications--a review. Nutr J 2014;13:17. 
  43. Spann NJ, Garmire LX, McDonald JG, Myers DS, Milne SB, Shibata N, Reichart D, Fox JN, Shaked I, Heudobler D, et al. Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 2012;151:138-152.  https://doi.org/10.1016/j.cell.2012.06.054
  44. Orso E, Matysik S, Grandl M, Liebisch G, Schmitz G. Human native, enzymatically modified and oxidized low density lipoproteins show different lipidomic pattern. Biochim Biophys Acta 2015;1851:299-306.  https://doi.org/10.1016/j.bbalip.2015.01.001
  45. Knuplez E, Marsche G. An updated review of pro- and anti-inflammatory properties of plasma lysophosphatidylcholines in the vascular system. Int J Mol Sci 2020;21:4501. 
  46. Maciel E, Felgueiras J, Silva EM, Ricardo F, Moreira AS, Melo T, Campos A, Fardilha M, Domingues P, Domingues MR. Lipid remodelling in human melanoma cells in response to UVA exposure. Photochem Photobiol Sci 2017;16:744-752.  https://doi.org/10.1039/c7pp00025a
  47. Rosenblat M, Oren R, Aviram M. Lysophosphatidylcholine (LPC) attenuates macrophage-mediated oxidation of LDL. Biochem Biophys Res Commun 2006;344:1271-1277.  https://doi.org/10.1016/j.bbrc.2006.04.038
  48. Schmitz G, Ruebsaamen K. Metabolism and atherogenic disease association of lysophosphatidylcholine. Atherosclerosis 2010;208:10-18. https://doi.org/10.1016/j.atherosclerosis.2009.05.029