Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.125

Rab25 Deficiency Perturbs Epidermal Differentiation and Skin Barrier Function in Mice  

Jeong, Haengdueng (Severance Biomedical Science Institute and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine)
Lim, Kyung-Min (College of Pharmacy, Ewha Womans University)
Goldenring, James R. (Epithelial Biology Center and Department of Surgery, Vanderbilt University School of Medicine and the Nashville VA Medical Center)
Nam, Ki Taek (Severance Biomedical Science Institute and Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine)
Publication Information
Biomolecules & Therapeutics / v.27, no.6, 2019 , pp. 553-561 More about this Journal
Abstract
Rab25, a member of the Rab11 small GTPase family, is central to achieving cellular polarity in epithelial tissues. Rab25 is highly expressed in epithelial cells of various tissues including breast, vagina, cervix, the gastrointestinal tract, and skin. Rab25 plays key roles in tumorigenesis, mainly by regulating epithelial differentiation and proliferation. However, its role in skin physiology is relatively unknown. In this study, we demonstrated that Rab25 knock-out (KO) mice show a skin barrier dysfunction with high trans-epidermal water loss and low cutaneous hydration. To examine this observation, we investigated the histology and epidermal differentiation markers of the skin in Rab25 KO mice. Rab25 KO increased cell proliferation at the basal layer of epidermis, whereas the supra-basal layer remained unaffected. Ceramide, which is a critical lipid component for skin barrier function, was not altered by Rab25 KO in its distribution or amount, as determined by immunohistochemistry. Notably, levels of epidermal differentiation markers, including loricrin, involucrin, and keratins (5, 14, 1, and 10) increased prominently in Rab25 KO mice. In line with this, depletion of Rab25 with single hairpin RNA increased the expression of differentiation markers in a human keratinocyte cell line, HaCaT. Transcriptomic analysis of the skin revealed increased expression of genes associated with skin development, epidermal development, and keratinocyte differentiation in Rab25 KO mice. Collectively, these results suggested that Rab25 is involved in the regulation of epidermal differentiation and proliferation.
Keywords
Rab25; Skin; Epidermis; Epidermal differentiation; Skin proliferation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bickenbach, J. R., Greer, J. M., Bundman, D. S., Rothnagel, J. A. and Roop, D. R. (1995) Loricrin expression is coordinated with other epidermal proteins and the appearance of lipid lamellar granules in development. J. Invest. Dermatol. 104, 405-410.   DOI
2 Prowse, D. M., Lee, D., Weiner, L., Jiang, N., Magro, C. M., Baden, H. P. and Brissette, J. L. (1999) Ectopic expression of the nude gene induces hyperproliferation and defects in differentiation: implications for the self-renewal of cutaneous epithelia. Dev. Biol. 212, 54-67.   DOI
3 Rodius, S., Indra, G., Thibault, C., Pfister, V. and Georges-Labouesse, E. (2007) Loss of alpha6 integrins in keratinocytes leads to an increase in TGFbeta and AP1 signaling and in expression of differentiation genes. J. Cell. Physiol. 212, 439-449.   DOI
4 Seven, D., Dogan, S., Kilic, E., Karaman, E., Koseoglu, H. and Buyru, N. (2015) Downregulation of Rab25 activates Akt1 in head and neck squamous cell carcinoma. Oncol. Lett. 10, 1927-1931.   DOI
5 Tummala, R. and Sinha, S. (2006) Differentiation-specific transcriptional regulation of the ESE-2 gene by a novel keratinocyte-restricted factor. J. Cell. Biochem. 97, 766-781.   DOI
6 Wang, X., Kumar, R., Navarre, J., Casanova, J. E. and Goldenring, J. R. (2000) Regulation of vesicle trafficking in madin-darby canine kidney cells by Rab11a and Rab25. J. Biol. Chem. 275, 29138-29146.   DOI
7 Brakebusch, C., Grose, R., Quondamatteo, F., Ramirez, A., Jorcano, J. L., Pirro, A., Svensson, M., Herken, R., Sasaki, T., Timpl, R., Werner, S. and Fassler, R. (2000) Skin and hair follicle integrity is crucially dependent on beta 1 integrin expression on keratinocytes. EMBO J. 19, 3990-4003.   DOI
8 Calautti, E., Li, J., Saoncella, S., Brissette, J. L. and Goetinck, P. F. (2005) Phosphoinositide 3-kinase signaling to Akt promotes keratinocyte differentiation versus death. J. Biol. Chem. 280, 32856-32865.   DOI
9 Casanova, J. E., Wang, X., Kumar, R., Bhartur, S. G., Navarre, J., Woodrum, J. E., Altschuler, Y., Ray, G. S. and Goldenring, J. R. (1999) Association of Rab25 and Rab11a with the apical recycling system of polarized Madin-Darby canine kidney cells. Mol. Biol. Cell 10, 47-61.   DOI
10 Cheng, K. W., Agarwal, R., Mitra, S., Lee, J. S., Carey, M., Gray, J. W. and Mills, G. B. (2012) Rab25 increases cellular ATP and glycogen stores protecting cancer cells from bioenergetic stress. EMBO Mol. Med. 4, 125-141.   DOI
11 Choi, M. J. and Maibach, H. I. (2005) Role of ceramides in barrier function of healthy and diseased skin. Am. J. Clin. Dermatol. 6, 215-223.   DOI
12 De Franceschi, N., Hamidi, H., Alanko, J., Sahgal, P. and Ivaska, J. (2015) Integrin traffic - the update. J. Cell Sci. 128, 839-852.   DOI
13 Janes, S. M., Ofstad, T. A., Campbell, D. H., Watt, F. M. and Prowse, D. M. (2004) Transient activation of FOXN1 in keratinocytes induces a transcriptional programme that promotes terminal differentiation: contrasting roles of FOXN1 and Akt. J. Cell Sci. 117, 4157-4168.   DOI
14 Welz, T., Wellbourne-Wood, J. and Kerkhoff, E. (2014) Orchestration of cell surface proteins by Rab11. Trends Cell Biol. 24, 407-415.   DOI
15 Wickett, R. R. and Visscher, M. O. (2006) Structure and function of the epidermal barrier. Am. J. Infect. Control 34, S98-S110.   DOI
16 Dozynkiewicz, M. A., Jamieson, N. B., Macpherson, I., Grindlay, J., van den Berghe, P. V., von Thun, A., Morton, J. P., Gourley, C., Timpson, P., Nixon, C., McKay, C. J., Carter, R., Strachan, D., Anderson, K., Sansom, O. J., Caswell, P. T. and Norman, J. C. (2012) Rab25 and CLIC3 collaborate to promote integrin recycling from late endosomes/lysosomes and drive cancer progression. Dev. Cell 22, 131-145.   DOI
17 Fan, Y., Wang, L., Han, X., Liu, X. and Ma, H. (2015) Rab25 is responsible for phosphoinositide 3-kinase/AKTmediated cisplatin resistance in human epithelial ovarian cancer cells. Mol. Med. Rep. 11, 2173-2178.   DOI
18 Goldenring, J. R., Shen, K. R., Vaughan, H. D. and Modlin, I. M. (1993) Identification of a small GTP-binding protein, Rab25, expressed in the gastrointestinal mucosa, kidney, and lung. J. Biol. Chem. 268, 18419-18422.   DOI
19 Goldenring, J. R. and Nam, K. T. (2011) Rab25 as a tumour suppressor in colon carcinogenesis. Br. J. Cancer 104, 33-36.   DOI
20 Hwang, J., Kita, R., Kwon, H. S., Choi, E. H., Lee, S. H., Udey, M. C. and Morasso, M. I. (2011) Epidermal ablation of Dlx3 is linked to IL-17-associated skin inflammation. Proc. Natl. Acad. Sci. U.S.A. 108, 11566-11571.   DOI
21 Jeong, H., Lim, K. M., Kim, K. H., Cho, Y., Lee, B., Knowles, B. C., Roland, J. T., Zwerner, J. P., Goldenring, J. R. and Nam, K. T. (2019) Loss of Rab25 promotes the development of skin squamous cell carcinoma through the dysregulation of integrin trafficking. J Pathol. doi: 10.1002/path.5311 [Epub ahead of print].   DOI
22 Nam, K. T., Lee, H. J., Smith, J. J., Lapierre, L. A., Kamath, V. P., Chen, X., Aronow, B. J., Yeatman, T. J., Bhartur, S. G., Calhoun, B. C., Condie, B., Manley, N. R., Beauchamp, R. D., Coffey, R. J. and Goldenring, J. R. (2010) Loss of Rab25 promotes the development of intestinal neoplasia in mice and is associated with human colorectal adenocarcinomas. J. Clin. Invest. 120, 840-849.   DOI
23 Joo, K. M., Hwang, J. H., Bae, S., Nahm, D. H., Park, H. S., Ye, Y. M. and Lim, K. M. (2015) Relationship of ceramide-, and free fatty acid-cholesterol ratios in the stratum corneum with skin barrier function of normal, atopic dermatitis lesional and non-lesional skins. J. Dermatol. Sci. 77, 71-74.   DOI
24 Kim, J. H., Cho, E. Y., Kwon, E., Kim, W. H., Park, J. S., Lee, Y. S., Yun, J. W. and Kang, B. C. (2017) Gold thread implantation promotes hair growth in human and mice. Lab. Anim. Res. 33, 291-297.   DOI
25 Kim, M., Jeong, H., Lee, B., Cho, Y., Yoon, W. K., Cho, A., Kwon, G., Nam, K. T., Ha, H. and Lim, K. M. (2019) Enrichment of short-chain ceramides and free fatty acids in the skin epidermis, liver, and kidneys of db/db mice, a type 2 diabetes mellitus model. Biomol. Ther. (Seoul) doi: 10.4062/biomolther.2018.214 [Epub ahead of print].   DOI
26 Lin, K. K., Chudova, D., Hatfield, G. W., Smyth, P. and Andersen, B. (2004) Identification of hair cycle-associated genes from timecourse gene expression profile data by using replicate variance. Proc. Natl. Acad. Sci. U.S.A. 101, 15955-15960.   DOI
27 Muroyama, A. and Lechler, T. (2012) Polarity and stratification of the epidermis. Semin. Cell Dev. Biol. 23, 890-896.   DOI
28 Park, G. T. and Morasso, M. I. (1999) Regulation of the Dlx3 homeobox gene upon differentiation of mouse keratinocytes. J. Biol. Chem. 274, 26599-26608.   DOI
29 Park, H. Y., Kim, J. H., Jung, M., Chung, C. H., Hasham, R., Park, C. S. and Choi, E. H. (2011) A long-standing hyperglycaemic condition impairs skin barrier by accelerating skin ageing process. Exp. Dermatol. 20, 969-974.   DOI
30 Park, Y. H., Jang, W. H., Seo, J. A., Park, M., Lee, T. R., Park, Y. H., Kim, D. K. and Lim, K. M. (2012) Decrease of ceramides with very long-chain fatty acids and downregulation of elongases in a murine atopic dermatitis model. J. Invest. Dermatol. 132, 476-479.   DOI