• 제목/요약/키워드: Ceramics material

검색결과 1,789건 처리시간 0.025초

Structural, Dielectric and Field-Induced Strain Properties of La-Modified Bi1/2Na1/2TiO3-BaTiO3-SrZrO3 Ceramics

  • Hussain, Ali;Maqbool, Adnan;Malik, Rizwan Ahmed;Zaman, Arif;Lee, Jae Hong;Song, Tae Kwon;Lee, Jae Hyun;Kim, Won Jeong;Kim, Myong Ho
    • 한국재료학회지
    • /
    • 제25권10호
    • /
    • pp.566-570
    • /
    • 2015
  • $Bi_{0.5}Na_{0.5}TiO_3$ (BNT) based ceramics are considered potential lead-free alternatives for $Pb(Zr,Ti)O_3$(PZT) based ceramics in various applications such as sensors, actuators and transducers. However, BNT-based ceramics have lower electromechanical performance as compared with PZT based ceramics. Therefore, in this work, lead-free bulk $0.99[(Bi_{0.5}Na_{0.5})_{0.935}Ba_{0.065}]_{(1-x)}La_xTiO_3-0.01SrZO_3$ (BNBTLax-SZ, with x = 0, 0.01, 0.02) ceramics were synthesized by a conventional solid state reaction The crystal structure, dielectric response, degree of diffuseness and electric-field-induced strain properties were investigated as a function of different La concentrations. All samples were crystallized into a single phase perovskite structure. The temperature dependent dielectric response of La-modified BNBT-SZ ceramics showed lower dielectric response and improved field-induced strain response. The field induced strain increased from 0.17%_for pure BNBT-SZ to 0.38 % for 1 mol.% La-modified BNBT-SZ ceramics at an applied electric field of 6 kV/mm. These results show that La-modified BNBT-SZ ceramic system is expected to be a new candidate material for lead-free electronic devices.

매개변수 평가법을 이용한 압전재료의 재료물성 최적화 연구 Part I. 다결정 PZT 세라믹스 (Optimization Study for Material Properties of Piezoelectric Material Using Parameter Estimation Method: Part I. Polycrystal PZT Ceramics)

  • 신호용;이호용;홍일곡;김종호;임종인
    • 한국전기전자재료학회논문지
    • /
    • 제35권5호
    • /
    • pp.471-479
    • /
    • 2022
  • Recently, piezoelectric devices, such as ultrasonic surgery, ultrasonic atomizer, and ultrasonic speaker, are analyzed and designed by finite element simulation methods. However, the discrepancy between the design and the experiment results of the device typically occurs due to the inaccuracy of the piezoelectric material properties. To improve the simulation accuracy, the material properties of the PZT ceramics were better refined using parameter estimation method. The material parameters are elastic stiffness cEij and piezoelectric constant eij of PZT ceramics. The impedance curve characteristics for the LTE mode of PZT ceramics were calculated. The mismatch between the simulation and the experimental data were compared and minimized by a least square method. Finally, the simulated impedance data were compared with the experimental data for the various vibration modes of PZT ceramics and the optimized material properties of PZT ceramics were verified. To further verify the accuracy, this method was also applied to piezoelectric PMN-PT single crystals.

바이몰프형 압전세라믹 캔틸레버를 이용한 수력에너지 하베스터 모듈 제작 및 발전 특성 (Fabrication and Energy Harvesting Characteristics of Water Energy Harvester Using Piezoelectric Ceramic Bimorph Cantilever)

  • 김경범;김창일;윤지선;정영훈;남중희;조정호;백종후;남산;성태현
    • 한국전기전자재료학회논문지
    • /
    • 제25권12호
    • /
    • pp.943-948
    • /
    • 2012
  • A new water energy harvester module, which is composed of piezoelectric bimorph cantilevers, harvesting circuit and a shaft with 16 impellers at a center axis, was fabricated for energy harvesting application. High energy density $Pb(Zr_{0.54}Ti_{0.46})O_3$ + 0.2 wt% $Cr_2O_3$ + 1.0 wt% $Nb_2O_5$ (PZT-CN) thick film obtained by tape casting method was used for the bimorph cantilever. The PZT-CN bimorph cantilever with a proof mass of 49 g exhibited extremely high output power of 22.5 mW (24 $mW//cm^3$) at resonance frequency of 11 Hz. In addition, the fabricated water energy harvester has a cylindrical structure with 48 bimorph cantilevers clamped at inner surface. A significantly high output power of 433 mW was obtained at a rotation speed of 120 rpm with a resistive load of $500{\Omega}$ for the water energy harvester.

식품분쇄용 세라믹 롤 재료 개발과 기계적 특성평가 (Development of Ceramic Roll Materials for Food Grinding Processing and Evaluation of Mechanical Behavior)

  • 강위수
    • Journal of Biosystems Engineering
    • /
    • 제26권1호
    • /
    • pp.47-56
    • /
    • 2001
  • In order to prevent the possibility of mixing of metal powder during food grinding processing with the metal roll mill this study was conducted to develope the materials of ceramics roll as a substitute of gray cast iron mill. Since the ceramics is brittle material and can be broken easily by a crack, it was needed to develope engineering ceramics roll materials with high elastic modulus and fracture toughness. Adding 0∼50 wt% Al$_2$O$_3$as densification additives to porcelain body material and forming the ceramics an different condition, mechanical properties were evaluated. The material structure’s densification process was analyzed by SEM and XRD. The evaluation of the mechanical properties of ceramics roll materials were compared and analyzed by non-destructive test using Young’s modulus and destructive test using 3-point bending strength and fracture toughness. The results showed several correlative results. Porcelain body material with 40 wt% Al$_2$O$_3$content heated at 1,200$\^{C}$ for 5h was high bulk density of 2.77, Young’s modulus of 118.4Gpa, 3-point bending strength of 137 MPa and fracture toughness of 2.88 MPa$.$m$\^$$\sfrac{1}{2}$/ . After analyzing the relationship between non-destructive test and destructive test, the coefficient of determination was more than 0.9. Therefore, the evaluation of non-destructive test by ultrasonic was turned out to be feasible in evaluating the mechanical properties of ceramics.

  • PDF

$Si_3N_4-hBN$ 머시너블 세라믹의 R-curve 거동분석과 가공성 평가 (Evaluation of R-curve Behavior Analysis and Machinability of $Si_3N_4-hBN$ Machinable Ceramics)

  • 장성민;조명우;조원승;이재형
    • 한국정밀공학회지
    • /
    • 제21권1호
    • /
    • pp.61-70
    • /
    • 2004
  • Generally, ceramics are very difficult-to-cut materials because of its high strength and hardness. The machining process of ceramics can be characterized by cracking and brittle fracture. In the machining of ceramics, edge chipping and crack propagation are the principal reasons to cause surface integrity deterioration. Such phenomenon can cause not only poor dimensional and geometric accuracy, but also possible failure of the ceramic parts. Ceramics can be machined with traditional method such as grinding and polishing. However, such processes are generally cost-expensive and have low material removal rate. Thus, in this paper, to overcome these problems. BN powder, which gives good cutting property, is added for the fabrication of machinable ceramics by volume of 5,10,15,20,25 and 30%. And, mechanical properties, R-curve behavior and machining tests are carried out to evaluate the machining properties of the manufactured machinable ceramics.

Tribological Behavior of Silicon Carbide Ceramics - A Review

  • Sharma, Sandan Kumar;Kumar, B. Venkata Manoj;Kim, Young-Wook
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.581-596
    • /
    • 2016
  • A comprehensive review on sliding and solid particle erosion wear characteristics of silicon carbide (SiC) ceramics and SiC composites is provided. Sliding or erosion wear behavior of ceramics is dependent on various material characteristics as well as test parameters. Effects of microstructural and mechanical properties of SiC ceramics are particularly focused to understand tribological performance of SiC ceramics. Results obtained between varieties of pairs of SiC ceramics indicate complexity in understanding dominant mechanisms of material removal. Wear mechanisms during sliding are mainly divided in two groups as mechanical and tribochemical. In solid particle erosion conditions, wear mechanisms of SiC ceramics are explained by elastic-plastic deformation controlled micro-fracture on the surface followed by radial-lateral crack propagation beneath the plastic zone.

압전 캔틸레버 스프링 구조물(SPCS)의 에너지 하베스팅 특성 (Energy Harvesting Characteristics of Spring Supported Piezoelectric Cantilever Structure (SPCS))

  • 김경범;김창일;정영훈;이영진;조정호;백종후;남산;성태현
    • 한국전기전자재료학회논문지
    • /
    • 제25권10호
    • /
    • pp.766-772
    • /
    • 2012
  • Spring supported piezoelectric cantilever structures (SPCS) were fabricated for vibration-based energy harvester application. We selected four elastic springs (A, B, C, and D type) as cantilever's supporter, each elastic spring has a different spring constant (S). The C type of SPCS ($S_C$: 4,649 N/m) showed a extremely low resonance frequency of 81 Hz along with the highest power output of 38.5 mW while the A type of SPCS ($S_A$: 40,629 N/m) didn't show a resonance frequency while. Therefore, it is considered that the lower spring constant lead to a lower resonance frequency of the SPCS. In addition, a tip mass (18 g) at one end of the SPCS could further reduce the resonance frequency without heavy degradation of power output.

초음파 진동을 이용한 세라믹스의 미세 구멍 가공 기술 (A Study on Micro-hole machining for Ceramics(A1$_2$O$_3$) Using Ultrasonic vibration)

  • 이봉구;최헌종;이석우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.988-992
    • /
    • 2002
  • Ultrasonic machining technology has been developed over recent years for the manufacture of and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile application. The past decade has seen a tremendous in the use of ceramics in structural application. The excellent thermal, chemical and wear resistance of these material can be realized because of recent improvements in the overall strength and uniformity of advanced ceramics. Ultrasonic machining, in which abrasive particles in slurry with water are presented to the work surface in the presence of an ultrasonic-vibrating tool, is process which should be of considerable interest, as its potential is not limited by the electrical or chemical characteristics of the work material, making it suitable for application to ceramics. This paper intends to further the understanding of the basic mechanism of ultrasonic machining for brittle material and ultrasonic machining of ceramics based in the fracture-mechanic concept has been analyzed.

  • PDF